![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gex1 | Structured version Visualization version GIF version |
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gex1 | ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝐸 = 1) | |
2 | 1 | oveq1d 7366 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (1(.g‘𝐺)𝑥)) |
3 | gexcl2.1 | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝐺) | |
4 | gexcl2.2 | . . . . . . . . . 10 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | eqid 2736 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
6 | eqid 2736 | . . . . . . . . . 10 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | 3, 4, 5, 6 | gexid 19316 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
8 | 7 | adantl 482 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
9 | 3, 5 | mulg1 18836 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (1(.g‘𝐺)𝑥) = 𝑥) |
10 | 9 | adantl 482 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
11 | 2, 8, 10 | 3eqtr3rd 2785 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
12 | velsn 4600 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylibr 233 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
14 | 13 | ex 413 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (𝑥 ∈ 𝑋 → 𝑥 ∈ {(0g‘𝐺)})) |
15 | 14 | ssrdv 3948 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ⊆ {(0g‘𝐺)}) |
16 | 3, 6 | mndidcl 18525 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝑋) |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (0g‘𝐺) ∈ 𝑋) |
18 | 17 | snssd 4767 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → {(0g‘𝐺)} ⊆ 𝑋) |
19 | 15, 18 | eqssd 3959 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 = {(0g‘𝐺)}) |
20 | fvex 6852 | . . . 4 ⊢ (0g‘𝐺) ∈ V | |
21 | 20 | ensn1 8919 | . . 3 ⊢ {(0g‘𝐺)} ≈ 1o |
22 | 19, 21 | eqbrtrdi 5142 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ≈ 1o) |
23 | simpl 483 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐺 ∈ Mnd) | |
24 | 1nn 12122 | . . . . 5 ⊢ 1 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 1 ∈ ℕ) |
26 | 9 | adantl 482 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
27 | en1eqsn 9176 | . . . . . . . . . 10 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) | |
28 | 16, 27 | sylan 580 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) |
29 | 28 | eleq2d 2823 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
30 | 29 | biimpa 477 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
31 | 30, 12 | sylib 217 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
32 | 26, 31 | eqtrd 2776 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
33 | 32 | ralrimiva 3141 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
34 | 3, 4, 5, 6 | gexlem2 19317 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...1)) |
35 | 23, 25, 33, 34 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 ∈ (1...1)) |
36 | elfz1eq 13406 | . . 3 ⊢ (𝐸 ∈ (1...1) → 𝐸 = 1) | |
37 | 35, 36 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 = 1) |
38 | 22, 37 | impbida 799 | 1 ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {csn 4584 class class class wbr 5103 ‘cfv 6493 (class class class)co 7351 1oc1o 8397 ≈ cen 8838 1c1 11010 ℕcn 12111 ...cfz 13378 Basecbs 17037 0gc0g 17275 Mndcmnd 18510 .gcmg 18825 gExcgex 19260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-sup 9336 df-inf 9337 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-n0 12372 df-z 12458 df-uz 12722 df-fz 13379 df-seq 13861 df-0g 17277 df-mgm 18451 df-sgrp 18500 df-mnd 18511 df-mulg 18826 df-gex 19264 |
This theorem is referenced by: pgpfac1lem3a 19808 pgpfaclem3 19815 |
Copyright terms: Public domain | W3C validator |