| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gex1 | Structured version Visualization version GIF version | ||
| Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| Ref | Expression |
|---|---|
| gex1 | ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝐸 = 1) | |
| 2 | 1 | oveq1d 7361 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (1(.g‘𝐺)𝑥)) |
| 3 | gexcl2.1 | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | gexcl2.2 | . . . . . . . . . 10 ⊢ 𝐸 = (gEx‘𝐺) | |
| 5 | eqid 2731 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | eqid 2731 | . . . . . . . . . 10 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | 3, 4, 5, 6 | gexid 19494 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 9 | 3, 5 | mulg1 18994 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (1(.g‘𝐺)𝑥) = 𝑥) |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 11 | 2, 8, 10 | 3eqtr3rd 2775 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
| 12 | velsn 4592 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
| 13 | 11, 12 | sylibr 234 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
| 14 | 13 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (𝑥 ∈ 𝑋 → 𝑥 ∈ {(0g‘𝐺)})) |
| 15 | 14 | ssrdv 3940 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ⊆ {(0g‘𝐺)}) |
| 16 | 3, 6 | mndidcl 18657 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝑋) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (0g‘𝐺) ∈ 𝑋) |
| 18 | 17 | snssd 4761 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → {(0g‘𝐺)} ⊆ 𝑋) |
| 19 | 15, 18 | eqssd 3952 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 = {(0g‘𝐺)}) |
| 20 | fvex 6835 | . . . 4 ⊢ (0g‘𝐺) ∈ V | |
| 21 | 20 | ensn1 8943 | . . 3 ⊢ {(0g‘𝐺)} ≈ 1o |
| 22 | 19, 21 | eqbrtrdi 5130 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ≈ 1o) |
| 23 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐺 ∈ Mnd) | |
| 24 | 1nn 12136 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 1 ∈ ℕ) |
| 26 | 9 | adantl 481 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 27 | en1eqsn 9159 | . . . . . . . . . 10 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) | |
| 28 | 16, 27 | sylan 580 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) |
| 29 | 28 | eleq2d 2817 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
| 30 | 29 | biimpa 476 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
| 31 | 30, 12 | sylib 218 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
| 32 | 26, 31 | eqtrd 2766 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 33 | 32 | ralrimiva 3124 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 34 | 3, 4, 5, 6 | gexlem2 19495 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...1)) |
| 35 | 23, 25, 33, 34 | syl3anc 1373 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 ∈ (1...1)) |
| 36 | elfz1eq 13435 | . . 3 ⊢ (𝐸 ∈ (1...1) → 𝐸 = 1) | |
| 37 | 35, 36 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 = 1) |
| 38 | 22, 37 | impbida 800 | 1 ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4576 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ≈ cen 8866 1c1 11007 ℕcn 12125 ...cfz 13407 Basecbs 17120 0gc0g 17343 Mndcmnd 18642 .gcmg 18980 gExcgex 19438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mulg 18981 df-gex 19442 |
| This theorem is referenced by: pgpfac1lem3a 19991 pgpfaclem3 19998 |
| Copyright terms: Public domain | W3C validator |