![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gex1 | Structured version Visualization version GIF version |
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gex1 | ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝐸 = 1) | |
2 | 1 | oveq1d 7463 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (1(.g‘𝐺)𝑥)) |
3 | gexcl2.1 | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝐺) | |
4 | gexcl2.2 | . . . . . . . . . 10 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | eqid 2740 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
6 | eqid 2740 | . . . . . . . . . 10 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | 3, 4, 5, 6 | gexid 19623 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
9 | 3, 5 | mulg1 19121 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (1(.g‘𝐺)𝑥) = 𝑥) |
10 | 9 | adantl 481 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
11 | 2, 8, 10 | 3eqtr3rd 2789 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
12 | velsn 4664 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylibr 234 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
14 | 13 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (𝑥 ∈ 𝑋 → 𝑥 ∈ {(0g‘𝐺)})) |
15 | 14 | ssrdv 4014 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ⊆ {(0g‘𝐺)}) |
16 | 3, 6 | mndidcl 18787 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝑋) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (0g‘𝐺) ∈ 𝑋) |
18 | 17 | snssd 4834 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → {(0g‘𝐺)} ⊆ 𝑋) |
19 | 15, 18 | eqssd 4026 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 = {(0g‘𝐺)}) |
20 | fvex 6933 | . . . 4 ⊢ (0g‘𝐺) ∈ V | |
21 | 20 | ensn1 9082 | . . 3 ⊢ {(0g‘𝐺)} ≈ 1o |
22 | 19, 21 | eqbrtrdi 5205 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ≈ 1o) |
23 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐺 ∈ Mnd) | |
24 | 1nn 12304 | . . . . 5 ⊢ 1 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 1 ∈ ℕ) |
26 | 9 | adantl 481 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
27 | en1eqsn 9336 | . . . . . . . . . 10 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) | |
28 | 16, 27 | sylan 579 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) |
29 | 28 | eleq2d 2830 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
30 | 29 | biimpa 476 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
31 | 30, 12 | sylib 218 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
32 | 26, 31 | eqtrd 2780 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
33 | 32 | ralrimiva 3152 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
34 | 3, 4, 5, 6 | gexlem2 19624 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...1)) |
35 | 23, 25, 33, 34 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 ∈ (1...1)) |
36 | elfz1eq 13595 | . . 3 ⊢ (𝐸 ∈ (1...1) → 𝐸 = 1) | |
37 | 35, 36 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 = 1) |
38 | 22, 37 | impbida 800 | 1 ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 ≈ cen 9000 1c1 11185 ℕcn 12293 ...cfz 13567 Basecbs 17258 0gc0g 17499 Mndcmnd 18772 .gcmg 19107 gExcgex 19567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mulg 19108 df-gex 19571 |
This theorem is referenced by: pgpfac1lem3a 20120 pgpfaclem3 20127 |
Copyright terms: Public domain | W3C validator |