![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gex1 | Structured version Visualization version GIF version |
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gex1 | ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝐸 = 1) | |
2 | 1 | oveq1d 7423 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (1(.g‘𝐺)𝑥)) |
3 | gexcl2.1 | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝐺) | |
4 | gexcl2.2 | . . . . . . . . . 10 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | eqid 2732 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
6 | eqid 2732 | . . . . . . . . . 10 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | 3, 4, 5, 6 | gexid 19448 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
8 | 7 | adantl 482 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (𝐸(.g‘𝐺)𝑥) = (0g‘𝐺)) |
9 | 3, 5 | mulg1 18960 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 → (1(.g‘𝐺)𝑥) = 𝑥) |
10 | 9 | adantl 482 | . . . . . . . 8 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
11 | 2, 8, 10 | 3eqtr3rd 2781 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
12 | velsn 4644 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylibr 233 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
14 | 13 | ex 413 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (𝑥 ∈ 𝑋 → 𝑥 ∈ {(0g‘𝐺)})) |
15 | 14 | ssrdv 3988 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ⊆ {(0g‘𝐺)}) |
16 | 3, 6 | mndidcl 18639 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝑋) |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (0g‘𝐺) ∈ 𝑋) |
18 | 17 | snssd 4812 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → {(0g‘𝐺)} ⊆ 𝑋) |
19 | 15, 18 | eqssd 3999 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 = {(0g‘𝐺)}) |
20 | fvex 6904 | . . . 4 ⊢ (0g‘𝐺) ∈ V | |
21 | 20 | ensn1 9016 | . . 3 ⊢ {(0g‘𝐺)} ≈ 1o |
22 | 19, 21 | eqbrtrdi 5187 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ≈ 1o) |
23 | simpl 483 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐺 ∈ Mnd) | |
24 | 1nn 12222 | . . . . 5 ⊢ 1 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 1 ∈ ℕ) |
26 | 9 | adantl 482 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = 𝑥) |
27 | en1eqsn 9273 | . . . . . . . . . 10 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) | |
28 | 16, 27 | sylan 580 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g‘𝐺)}) |
29 | 28 | eleq2d 2819 | . . . . . . . 8 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
30 | 29 | biimpa 477 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ {(0g‘𝐺)}) |
31 | 30, 12 | sylib 217 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → 𝑥 = (0g‘𝐺)) |
32 | 26, 31 | eqtrd 2772 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥 ∈ 𝑋) → (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
33 | 32 | ralrimiva 3146 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) |
34 | 3, 4, 5, 6 | gexlem2 19449 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (1(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...1)) |
35 | 23, 25, 33, 34 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 ∈ (1...1)) |
36 | elfz1eq 13511 | . . 3 ⊢ (𝐸 ∈ (1...1) → 𝐸 = 1) | |
37 | 35, 36 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 = 1) |
38 | 22, 37 | impbida 799 | 1 ⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 1oc1o 8458 ≈ cen 8935 1c1 11110 ℕcn 12211 ...cfz 13483 Basecbs 17143 0gc0g 17384 Mndcmnd 18624 .gcmg 18949 gExcgex 19392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mulg 18950 df-gex 19396 |
This theorem is referenced by: pgpfac1lem3a 19945 pgpfaclem3 19952 |
Copyright terms: Public domain | W3C validator |