MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex1 Structured version   Visualization version   GIF version

Theorem gex1 19504
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl2.1 𝑋 = (Base‘𝐺)
gexcl2.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex1 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o))

Proof of Theorem gex1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → 𝐸 = 1)
21oveq1d 7361 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → (𝐸(.g𝐺)𝑥) = (1(.g𝐺)𝑥))
3 gexcl2.1 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
4 gexcl2.2 . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
5 eqid 2731 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
6 eqid 2731 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
73, 4, 5, 6gexid 19494 . . . . . . . . 9 (𝑥𝑋 → (𝐸(.g𝐺)𝑥) = (0g𝐺))
87adantl 481 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → (𝐸(.g𝐺)𝑥) = (0g𝐺))
93, 5mulg1 18994 . . . . . . . . 9 (𝑥𝑋 → (1(.g𝐺)𝑥) = 𝑥)
109adantl 481 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → (1(.g𝐺)𝑥) = 𝑥)
112, 8, 103eqtr3rd 2775 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → 𝑥 = (0g𝐺))
12 velsn 4592 . . . . . . 7 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
1311, 12sylibr 234 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐸 = 1) ∧ 𝑥𝑋) → 𝑥 ∈ {(0g𝐺)})
1413ex 412 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (𝑥𝑋𝑥 ∈ {(0g𝐺)}))
1514ssrdv 3940 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ⊆ {(0g𝐺)})
163, 6mndidcl 18657 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝑋)
1716adantr 480 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → (0g𝐺) ∈ 𝑋)
1817snssd 4761 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → {(0g𝐺)} ⊆ 𝑋)
1915, 18eqssd 3952 . . 3 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 = {(0g𝐺)})
20 fvex 6835 . . . 4 (0g𝐺) ∈ V
2120ensn1 8943 . . 3 {(0g𝐺)} ≈ 1o
2219, 21eqbrtrdi 5130 . 2 ((𝐺 ∈ Mnd ∧ 𝐸 = 1) → 𝑋 ≈ 1o)
23 simpl 482 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐺 ∈ Mnd)
24 1nn 12136 . . . . 5 1 ∈ ℕ
2524a1i 11 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 1 ∈ ℕ)
269adantl 481 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥𝑋) → (1(.g𝐺)𝑥) = 𝑥)
27 en1eqsn 9159 . . . . . . . . . 10 (((0g𝐺) ∈ 𝑋𝑋 ≈ 1o) → 𝑋 = {(0g𝐺)})
2816, 27sylan 580 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝑋 = {(0g𝐺)})
2928eleq2d 2817 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → (𝑥𝑋𝑥 ∈ {(0g𝐺)}))
3029biimpa 476 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥𝑋) → 𝑥 ∈ {(0g𝐺)})
3130, 12sylib 218 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥𝑋) → 𝑥 = (0g𝐺))
3226, 31eqtrd 2766 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) ∧ 𝑥𝑋) → (1(.g𝐺)𝑥) = (0g𝐺))
3332ralrimiva 3124 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → ∀𝑥𝑋 (1(.g𝐺)𝑥) = (0g𝐺))
343, 4, 5, 6gexlem2 19495 . . . 4 ((𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀𝑥𝑋 (1(.g𝐺)𝑥) = (0g𝐺)) → 𝐸 ∈ (1...1))
3523, 25, 33, 34syl3anc 1373 . . 3 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 ∈ (1...1))
36 elfz1eq 13435 . . 3 (𝐸 ∈ (1...1) → 𝐸 = 1)
3735, 36syl 17 . 2 ((𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o) → 𝐸 = 1)
3822, 37impbida 800 1 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝑋 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  1oc1o 8378  cen 8866  1c1 11007  cn 12125  ...cfz 13407  Basecbs 17120  0gc0g 17343  Mndcmnd 18642  .gcmg 18980  gExcgex 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mulg 18981  df-gex 19442
This theorem is referenced by:  pgpfac1lem3a  19991  pgpfaclem3  19998
  Copyright terms: Public domain W3C validator