MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopn Structured version   Visualization version   GIF version

Theorem iunopn 21503
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iunopn ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4917 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 485 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 uniiunlem 4012 . . . 4 (∀𝑥𝐴 𝐵𝐽 → (∀𝑥𝐴 𝐵𝐽 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽))
43ibi 270 . . 3 (∀𝑥𝐴 𝐵𝐽 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
5 uniopn 21502 . . 3 ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
64, 5sylan2 595 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
72, 6eqeltrd 2890 1 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881   cuni 4800   ciun 4881  Topctop 21498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-in 3888  df-ss 3898  df-pw 4499  df-uni 4801  df-iun 4883  df-top 21499
This theorem is referenced by:  iincld  21644  tgcn  21857  kgentopon  22143  xkococnlem  22264  qtoptop2  22304  zcld  23418  metnrmlem2  23465  cnambfre  35105
  Copyright terms: Public domain W3C validator