| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunopn | Structured version Visualization version GIF version | ||
| Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| iunopn | ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 5011 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | uniiunlem 4067 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽)) | |
| 4 | 3 | ibi 267 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) |
| 5 | uniopn 22840 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) | |
| 6 | 4, 5 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) |
| 7 | 2, 6 | eqeltrd 2835 | 1 ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 ∪ cuni 4888 ∪ ciun 4972 Topctop 22836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 df-uni 4889 df-iun 4974 df-top 22837 |
| This theorem is referenced by: iincld 22982 tgcn 23195 kgentopon 23481 xkococnlem 23602 qtoptop2 23642 zcld 24758 metnrmlem2 24805 cnambfre 37697 |
| Copyright terms: Public domain | W3C validator |