MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zcld Structured version   Visualization version   GIF version

Theorem zcld 24835
Description: The integers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
zcld.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
zcld ℤ ∈ (Clsd‘𝐽)

Proof of Theorem zcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4995 . . . . 5 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
2 elioore 13417 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ ℝ)
32adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ ℝ)
4 eliooord 13446 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → (𝑥 < 𝑦𝑦 < (𝑥 + 1)))
5 btwnnz 12694 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑥 < 𝑦𝑦 < (𝑥 + 1)) → ¬ 𝑦 ∈ ℤ)
653expb 1121 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑥 < 𝑦𝑦 < (𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
74, 6sylan2 593 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
83, 7eldifd 3962 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ (ℝ ∖ ℤ))
98rexlimiva 3147 . . . . . 6 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ (ℝ ∖ ℤ))
10 eldifi 4131 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ℝ)
1110flcld 13838 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℤ)
1211zred 12722 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ)
13 flle 13839 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⌊‘𝑦) ≤ 𝑦)
1410, 13syl 17 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≤ 𝑦)
15 eldifn 4132 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ ℤ) → ¬ 𝑦 ∈ ℤ)
16 nelne2 3040 . . . . . . . . . . 11 (((⌊‘𝑦) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1711, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1817necomd 2996 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ≠ (⌊‘𝑦))
1912, 10, 14, 18leneltd 11415 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) < 𝑦)
20 flltp1 13840 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < ((⌊‘𝑦) + 1))
2110, 20syl 17 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 < ((⌊‘𝑦) + 1))
2212rexrd 11311 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ*)
23 peano2re 11434 . . . . . . . . . . 11 ((⌊‘𝑦) ∈ ℝ → ((⌊‘𝑦) + 1) ∈ ℝ)
2412, 23syl 17 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ)
2524rexrd 11311 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ*)
26 elioo2 13428 . . . . . . . . 9 (((⌊‘𝑦) ∈ ℝ* ∧ ((⌊‘𝑦) + 1) ∈ ℝ*) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2722, 25, 26syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2810, 19, 21, 27mpbir3and 1343 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
29 id 22 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → 𝑥 = (⌊‘𝑦))
30 oveq1 7438 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → (𝑥 + 1) = ((⌊‘𝑦) + 1))
3129, 30oveq12d 7449 . . . . . . . . 9 (𝑥 = (⌊‘𝑦) → (𝑥(,)(𝑥 + 1)) = ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
3231eleq2d 2827 . . . . . . . 8 (𝑥 = (⌊‘𝑦) → (𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))))
3332rspcev 3622 . . . . . . 7 (((⌊‘𝑦) ∈ ℤ ∧ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
3411, 28, 33syl2anc 584 . . . . . 6 (𝑦 ∈ (ℝ ∖ ℤ) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
359, 34impbii 209 . . . . 5 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
361, 35bitri 275 . . . 4 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
3736eqriv 2734 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) = (ℝ ∖ ℤ)
38 zcld.1 . . . . 5 𝐽 = (topGen‘ran (,))
39 retop 24782 . . . . 5 (topGen‘ran (,)) ∈ Top
4038, 39eqeltri 2837 . . . 4 𝐽 ∈ Top
41 iooretop 24786 . . . . . 6 (𝑥(,)(𝑥 + 1)) ∈ (topGen‘ran (,))
4241, 38eleqtrri 2840 . . . . 5 (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4342rgenw 3065 . . . 4 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
44 iunopn 22904 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽) → 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽)
4540, 43, 44mp2an 692 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4637, 45eqeltrri 2838 . 2 (ℝ ∖ ℤ) ∈ 𝐽
47 zssre 12620 . . 3 ℤ ⊆ ℝ
48 uniretop 24783 . . . . 5 ℝ = (topGen‘ran (,))
4938unieqi 4919 . . . . 5 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2768 . . . 4 ℝ = 𝐽
5150iscld2 23036 . . 3 ((𝐽 ∈ Top ∧ ℤ ⊆ ℝ) → (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽))
5240, 47, 51mp2an 692 . 2 (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽)
5346, 52mpbir 231 1 ℤ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  wss 3951   cuni 4907   ciun 4991   class class class wbr 5143  ran crn 5686  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cz 12613  (,)cioo 13387  cfl 13830  topGenctg 17482  Topctop 22899  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ioo 13391  df-fl 13832  df-topgen 17488  df-top 22900  df-bases 22953  df-cld 23027
This theorem is referenced by:  zcld2  24837
  Copyright terms: Public domain W3C validator