MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zcld Structured version   Visualization version   GIF version

Theorem zcld 24854
Description: The integers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
zcld.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
zcld ℤ ∈ (Clsd‘𝐽)

Proof of Theorem zcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 5019 . . . . 5 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
2 elioore 13437 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ ℝ)
32adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ ℝ)
4 eliooord 13466 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → (𝑥 < 𝑦𝑦 < (𝑥 + 1)))
5 btwnnz 12719 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑥 < 𝑦𝑦 < (𝑥 + 1)) → ¬ 𝑦 ∈ ℤ)
653expb 1120 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑥 < 𝑦𝑦 < (𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
74, 6sylan2 592 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
83, 7eldifd 3987 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ (ℝ ∖ ℤ))
98rexlimiva 3153 . . . . . 6 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ (ℝ ∖ ℤ))
10 eldifi 4154 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ℝ)
1110flcld 13849 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℤ)
1211zred 12747 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ)
13 flle 13850 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⌊‘𝑦) ≤ 𝑦)
1410, 13syl 17 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≤ 𝑦)
15 eldifn 4155 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ ℤ) → ¬ 𝑦 ∈ ℤ)
16 nelne2 3046 . . . . . . . . . . 11 (((⌊‘𝑦) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1711, 15, 16syl2anc 583 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1817necomd 3002 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ≠ (⌊‘𝑦))
1912, 10, 14, 18leneltd 11444 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) < 𝑦)
20 flltp1 13851 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < ((⌊‘𝑦) + 1))
2110, 20syl 17 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 < ((⌊‘𝑦) + 1))
2212rexrd 11340 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ*)
23 peano2re 11463 . . . . . . . . . . 11 ((⌊‘𝑦) ∈ ℝ → ((⌊‘𝑦) + 1) ∈ ℝ)
2412, 23syl 17 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ)
2524rexrd 11340 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ*)
26 elioo2 13448 . . . . . . . . 9 (((⌊‘𝑦) ∈ ℝ* ∧ ((⌊‘𝑦) + 1) ∈ ℝ*) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2722, 25, 26syl2anc 583 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2810, 19, 21, 27mpbir3and 1342 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
29 id 22 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → 𝑥 = (⌊‘𝑦))
30 oveq1 7455 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → (𝑥 + 1) = ((⌊‘𝑦) + 1))
3129, 30oveq12d 7466 . . . . . . . . 9 (𝑥 = (⌊‘𝑦) → (𝑥(,)(𝑥 + 1)) = ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
3231eleq2d 2830 . . . . . . . 8 (𝑥 = (⌊‘𝑦) → (𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))))
3332rspcev 3635 . . . . . . 7 (((⌊‘𝑦) ∈ ℤ ∧ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
3411, 28, 33syl2anc 583 . . . . . 6 (𝑦 ∈ (ℝ ∖ ℤ) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
359, 34impbii 209 . . . . 5 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
361, 35bitri 275 . . . 4 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
3736eqriv 2737 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) = (ℝ ∖ ℤ)
38 zcld.1 . . . . 5 𝐽 = (topGen‘ran (,))
39 retop 24803 . . . . 5 (topGen‘ran (,)) ∈ Top
4038, 39eqeltri 2840 . . . 4 𝐽 ∈ Top
41 iooretop 24807 . . . . . 6 (𝑥(,)(𝑥 + 1)) ∈ (topGen‘ran (,))
4241, 38eleqtrri 2843 . . . . 5 (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4342rgenw 3071 . . . 4 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
44 iunopn 22925 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽) → 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽)
4540, 43, 44mp2an 691 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4637, 45eqeltrri 2841 . 2 (ℝ ∖ ℤ) ∈ 𝐽
47 zssre 12646 . . 3 ℤ ⊆ ℝ
48 uniretop 24804 . . . . 5 ℝ = (topGen‘ran (,))
4938unieqi 4943 . . . . 5 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2771 . . . 4 ℝ = 𝐽
5150iscld2 23057 . . 3 ((𝐽 ∈ Top ∧ ℤ ⊆ ℝ) → (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽))
5240, 47, 51mp2an 691 . 2 (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽)
5346, 52mpbir 231 1 ℤ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976   cuni 4931   ciun 5015   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cz 12639  (,)cioo 13407  cfl 13841  topGenctg 17497  Topctop 22920  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-ioo 13411  df-fl 13843  df-topgen 17503  df-top 22921  df-bases 22974  df-cld 23048
This theorem is referenced by:  zcld2  24856
  Copyright terms: Public domain W3C validator