MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zcld Structured version   Visualization version   GIF version

Theorem zcld 24848
Description: The integers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
zcld.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
zcld ℤ ∈ (Clsd‘𝐽)

Proof of Theorem zcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4999 . . . . 5 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
2 elioore 13413 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ ℝ)
32adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ ℝ)
4 eliooord 13442 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → (𝑥 < 𝑦𝑦 < (𝑥 + 1)))
5 btwnnz 12691 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑥 < 𝑦𝑦 < (𝑥 + 1)) → ¬ 𝑦 ∈ ℤ)
653expb 1119 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑥 < 𝑦𝑦 < (𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
74, 6sylan2 593 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
83, 7eldifd 3973 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ (ℝ ∖ ℤ))
98rexlimiva 3144 . . . . . 6 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ (ℝ ∖ ℤ))
10 eldifi 4140 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ℝ)
1110flcld 13834 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℤ)
1211zred 12719 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ)
13 flle 13835 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⌊‘𝑦) ≤ 𝑦)
1410, 13syl 17 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≤ 𝑦)
15 eldifn 4141 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ ℤ) → ¬ 𝑦 ∈ ℤ)
16 nelne2 3037 . . . . . . . . . . 11 (((⌊‘𝑦) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1711, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1817necomd 2993 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ≠ (⌊‘𝑦))
1912, 10, 14, 18leneltd 11412 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) < 𝑦)
20 flltp1 13836 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < ((⌊‘𝑦) + 1))
2110, 20syl 17 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 < ((⌊‘𝑦) + 1))
2212rexrd 11308 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ*)
23 peano2re 11431 . . . . . . . . . . 11 ((⌊‘𝑦) ∈ ℝ → ((⌊‘𝑦) + 1) ∈ ℝ)
2412, 23syl 17 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ)
2524rexrd 11308 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ*)
26 elioo2 13424 . . . . . . . . 9 (((⌊‘𝑦) ∈ ℝ* ∧ ((⌊‘𝑦) + 1) ∈ ℝ*) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2722, 25, 26syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2810, 19, 21, 27mpbir3and 1341 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
29 id 22 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → 𝑥 = (⌊‘𝑦))
30 oveq1 7437 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → (𝑥 + 1) = ((⌊‘𝑦) + 1))
3129, 30oveq12d 7448 . . . . . . . . 9 (𝑥 = (⌊‘𝑦) → (𝑥(,)(𝑥 + 1)) = ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
3231eleq2d 2824 . . . . . . . 8 (𝑥 = (⌊‘𝑦) → (𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))))
3332rspcev 3621 . . . . . . 7 (((⌊‘𝑦) ∈ ℤ ∧ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
3411, 28, 33syl2anc 584 . . . . . 6 (𝑦 ∈ (ℝ ∖ ℤ) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
359, 34impbii 209 . . . . 5 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
361, 35bitri 275 . . . 4 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
3736eqriv 2731 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) = (ℝ ∖ ℤ)
38 zcld.1 . . . . 5 𝐽 = (topGen‘ran (,))
39 retop 24797 . . . . 5 (topGen‘ran (,)) ∈ Top
4038, 39eqeltri 2834 . . . 4 𝐽 ∈ Top
41 iooretop 24801 . . . . . 6 (𝑥(,)(𝑥 + 1)) ∈ (topGen‘ran (,))
4241, 38eleqtrri 2837 . . . . 5 (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4342rgenw 3062 . . . 4 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
44 iunopn 22919 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽) → 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽)
4540, 43, 44mp2an 692 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4637, 45eqeltrri 2835 . 2 (ℝ ∖ ℤ) ∈ 𝐽
47 zssre 12617 . . 3 ℤ ⊆ ℝ
48 uniretop 24798 . . . . 5 ℝ = (topGen‘ran (,))
4938unieqi 4923 . . . . 5 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2765 . . . 4 ℝ = 𝐽
5150iscld2 23051 . . 3 ((𝐽 ∈ Top ∧ ℤ ⊆ ℝ) → (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽))
5240, 47, 51mp2an 692 . 2 (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽)
5346, 52mpbir 231 1 ℤ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cdif 3959  wss 3962   cuni 4911   ciun 4995   class class class wbr 5147  ran crn 5689  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155  *cxr 11291   < clt 11292  cle 11293  cz 12610  (,)cioo 13383  cfl 13826  topGenctg 17483  Topctop 22914  Clsdccld 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-ioo 13387  df-fl 13828  df-topgen 17489  df-top 22915  df-bases 22968  df-cld 23042
This theorem is referenced by:  zcld2  24850
  Copyright terms: Public domain W3C validator