MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zcld Structured version   Visualization version   GIF version

Theorem zcld 24709
Description: The integers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
zcld.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
zcld ℤ ∈ (Clsd‘𝐽)

Proof of Theorem zcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4962 . . . . 5 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
2 elioore 13343 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ ℝ)
32adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ ℝ)
4 eliooord 13373 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → (𝑥 < 𝑦𝑦 < (𝑥 + 1)))
5 btwnnz 12617 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑥 < 𝑦𝑦 < (𝑥 + 1)) → ¬ 𝑦 ∈ ℤ)
653expb 1120 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑥 < 𝑦𝑦 < (𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
74, 6sylan2 593 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
83, 7eldifd 3928 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ (ℝ ∖ ℤ))
98rexlimiva 3127 . . . . . 6 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ (ℝ ∖ ℤ))
10 eldifi 4097 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ℝ)
1110flcld 13767 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℤ)
1211zred 12645 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ)
13 flle 13768 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⌊‘𝑦) ≤ 𝑦)
1410, 13syl 17 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≤ 𝑦)
15 eldifn 4098 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ ℤ) → ¬ 𝑦 ∈ ℤ)
16 nelne2 3024 . . . . . . . . . . 11 (((⌊‘𝑦) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1711, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1817necomd 2981 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ≠ (⌊‘𝑦))
1912, 10, 14, 18leneltd 11335 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) < 𝑦)
20 flltp1 13769 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < ((⌊‘𝑦) + 1))
2110, 20syl 17 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 < ((⌊‘𝑦) + 1))
2212rexrd 11231 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ*)
23 peano2re 11354 . . . . . . . . . . 11 ((⌊‘𝑦) ∈ ℝ → ((⌊‘𝑦) + 1) ∈ ℝ)
2412, 23syl 17 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ)
2524rexrd 11231 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ*)
26 elioo2 13354 . . . . . . . . 9 (((⌊‘𝑦) ∈ ℝ* ∧ ((⌊‘𝑦) + 1) ∈ ℝ*) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2722, 25, 26syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2810, 19, 21, 27mpbir3and 1343 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
29 id 22 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → 𝑥 = (⌊‘𝑦))
30 oveq1 7397 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → (𝑥 + 1) = ((⌊‘𝑦) + 1))
3129, 30oveq12d 7408 . . . . . . . . 9 (𝑥 = (⌊‘𝑦) → (𝑥(,)(𝑥 + 1)) = ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
3231eleq2d 2815 . . . . . . . 8 (𝑥 = (⌊‘𝑦) → (𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))))
3332rspcev 3591 . . . . . . 7 (((⌊‘𝑦) ∈ ℤ ∧ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
3411, 28, 33syl2anc 584 . . . . . 6 (𝑦 ∈ (ℝ ∖ ℤ) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
359, 34impbii 209 . . . . 5 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
361, 35bitri 275 . . . 4 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
3736eqriv 2727 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) = (ℝ ∖ ℤ)
38 zcld.1 . . . . 5 𝐽 = (topGen‘ran (,))
39 retop 24656 . . . . 5 (topGen‘ran (,)) ∈ Top
4038, 39eqeltri 2825 . . . 4 𝐽 ∈ Top
41 iooretop 24660 . . . . . 6 (𝑥(,)(𝑥 + 1)) ∈ (topGen‘ran (,))
4241, 38eleqtrri 2828 . . . . 5 (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4342rgenw 3049 . . . 4 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
44 iunopn 22792 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽) → 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽)
4540, 43, 44mp2an 692 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4637, 45eqeltrri 2826 . 2 (ℝ ∖ ℤ) ∈ 𝐽
47 zssre 12543 . . 3 ℤ ⊆ ℝ
48 uniretop 24657 . . . . 5 ℝ = (topGen‘ran (,))
4938unieqi 4886 . . . . 5 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2756 . . . 4 ℝ = 𝐽
5150iscld2 22922 . . 3 ((𝐽 ∈ Top ∧ ℤ ⊆ ℝ) → (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽))
5240, 47, 51mp2an 692 . 2 (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽)
5346, 52mpbir 231 1 ℤ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917   cuni 4874   ciun 4958   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cz 12536  (,)cioo 13313  cfl 13759  topGenctg 17407  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ioo 13317  df-fl 13761  df-topgen 17413  df-top 22788  df-bases 22840  df-cld 22913
This theorem is referenced by:  zcld2  24711
  Copyright terms: Public domain W3C validator