MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zcld Structured version   Visualization version   GIF version

Theorem zcld 24176
Description: The integers are a closed set in the topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
zcld.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
zcld ℤ ∈ (Clsd‘𝐽)

Proof of Theorem zcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4958 . . . . 5 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
2 elioore 13294 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ ℝ)
32adantl 482 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ ℝ)
4 eliooord 13323 . . . . . . . . 9 (𝑦 ∈ (𝑥(,)(𝑥 + 1)) → (𝑥 < 𝑦𝑦 < (𝑥 + 1)))
5 btwnnz 12579 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑥 < 𝑦𝑦 < (𝑥 + 1)) → ¬ 𝑦 ∈ ℤ)
653expb 1120 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑥 < 𝑦𝑦 < (𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
74, 6sylan2 593 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → ¬ 𝑦 ∈ ℤ)
83, 7eldifd 3921 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (𝑥(,)(𝑥 + 1))) → 𝑦 ∈ (ℝ ∖ ℤ))
98rexlimiva 3144 . . . . . 6 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) → 𝑦 ∈ (ℝ ∖ ℤ))
10 eldifi 4086 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ℝ)
1110flcld 13703 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℤ)
1211zred 12607 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ)
13 flle 13704 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⌊‘𝑦) ≤ 𝑦)
1410, 13syl 17 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≤ 𝑦)
15 eldifn 4087 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ ℤ) → ¬ 𝑦 ∈ ℤ)
16 nelne2 3042 . . . . . . . . . . 11 (((⌊‘𝑦) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1711, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ≠ 𝑦)
1817necomd 2999 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ≠ (⌊‘𝑦))
1912, 10, 14, 18leneltd 11309 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) < 𝑦)
20 flltp1 13705 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < ((⌊‘𝑦) + 1))
2110, 20syl 17 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 < ((⌊‘𝑦) + 1))
2212rexrd 11205 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → (⌊‘𝑦) ∈ ℝ*)
23 peano2re 11328 . . . . . . . . . . 11 ((⌊‘𝑦) ∈ ℝ → ((⌊‘𝑦) + 1) ∈ ℝ)
2412, 23syl 17 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ)
2524rexrd 11205 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ ℤ) → ((⌊‘𝑦) + 1) ∈ ℝ*)
26 elioo2 13305 . . . . . . . . 9 (((⌊‘𝑦) ∈ ℝ* ∧ ((⌊‘𝑦) + 1) ∈ ℝ*) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2722, 25, 26syl2anc 584 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ ℤ) → (𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)) ↔ (𝑦 ∈ ℝ ∧ (⌊‘𝑦) < 𝑦𝑦 < ((⌊‘𝑦) + 1))))
2810, 19, 21, 27mpbir3and 1342 . . . . . . 7 (𝑦 ∈ (ℝ ∖ ℤ) → 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
29 id 22 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → 𝑥 = (⌊‘𝑦))
30 oveq1 7364 . . . . . . . . . 10 (𝑥 = (⌊‘𝑦) → (𝑥 + 1) = ((⌊‘𝑦) + 1))
3129, 30oveq12d 7375 . . . . . . . . 9 (𝑥 = (⌊‘𝑦) → (𝑥(,)(𝑥 + 1)) = ((⌊‘𝑦)(,)((⌊‘𝑦) + 1)))
3231eleq2d 2823 . . . . . . . 8 (𝑥 = (⌊‘𝑦) → (𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))))
3332rspcev 3581 . . . . . . 7 (((⌊‘𝑦) ∈ ℤ ∧ 𝑦 ∈ ((⌊‘𝑦)(,)((⌊‘𝑦) + 1))) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
3411, 28, 33syl2anc 584 . . . . . 6 (𝑦 ∈ (ℝ ∖ ℤ) → ∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)))
359, 34impbii 208 . . . . 5 (∃𝑥 ∈ ℤ 𝑦 ∈ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
361, 35bitri 274 . . . 4 (𝑦 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ↔ 𝑦 ∈ (ℝ ∖ ℤ))
3736eqriv 2733 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) = (ℝ ∖ ℤ)
38 zcld.1 . . . . 5 𝐽 = (topGen‘ran (,))
39 retop 24125 . . . . 5 (topGen‘ran (,)) ∈ Top
4038, 39eqeltri 2834 . . . 4 𝐽 ∈ Top
41 iooretop 24129 . . . . . 6 (𝑥(,)(𝑥 + 1)) ∈ (topGen‘ran (,))
4241, 38eleqtrri 2837 . . . . 5 (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4342rgenw 3068 . . . 4 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
44 iunopn 22247 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽) → 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽)
4540, 43, 44mp2an 690 . . 3 𝑥 ∈ ℤ (𝑥(,)(𝑥 + 1)) ∈ 𝐽
4637, 45eqeltrri 2835 . 2 (ℝ ∖ ℤ) ∈ 𝐽
47 zssre 12506 . . 3 ℤ ⊆ ℝ
48 uniretop 24126 . . . . 5 ℝ = (topGen‘ran (,))
4938unieqi 4878 . . . . 5 𝐽 = (topGen‘ran (,))
5048, 49eqtr4i 2767 . . . 4 ℝ = 𝐽
5150iscld2 22379 . . 3 ((𝐽 ∈ Top ∧ ℤ ⊆ ℝ) → (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽))
5240, 47, 51mp2an 690 . 2 (ℤ ∈ (Clsd‘𝐽) ↔ (ℝ ∖ ℤ) ∈ 𝐽)
5346, 52mpbir 230 1 ℤ ∈ (Clsd‘𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  wss 3910   cuni 4865   ciun 4954   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cz 12499  (,)cioo 13264  cfl 13695  topGenctg 17319  Topctop 22242  Clsdccld 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-ioo 13268  df-fl 13697  df-topgen 17325  df-top 22243  df-bases 22296  df-cld 22370
This theorem is referenced by:  zcld2  24178
  Copyright terms: Public domain W3C validator