MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Visualization version   GIF version

Theorem tgcn 23281
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
tgcn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 iscn 23264 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
41, 2, 3syl2anc 583 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
6 topontop 22940 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
72, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
85, 7eqeltrrd 2845 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
9 tgclb 22998 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
108, 9sylibr 234 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
11 bastg 22994 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1210, 11syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1312, 5sseqtrrd 4050 . . . . 5 (𝜑𝐵𝐾)
14 ssralv 4077 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
1513, 14syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
165eleq2d 2830 . . . . . . . . 9 (𝜑 → (𝑥𝐾𝑥 ∈ (topGen‘𝐵)))
17 eltg3 22990 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1810, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1916, 18bitrd 279 . . . . . . . 8 (𝜑 → (𝑥𝐾 ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
20 ssralv 4077 . . . . . . . . . . . 12 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
21 topontop 22940 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
221, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
23 iunopn 22925 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
2423ex 412 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2620, 25sylan9r 508 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
27 imaeq2 6085 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
28 imauni 7283 . . . . . . . . . . . . . 14 (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦)
2927, 28eqtrdi 2796 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
3029eleq1d 2829 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3130imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽) ↔ (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)))
3226, 31syl5ibrcom 247 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3332expimpd 453 . . . . . . . . 9 (𝜑 → ((𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3433exlimdv 1932 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3519, 34sylbid 240 . . . . . . 7 (𝜑 → (𝑥𝐾 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3635imp 406 . . . . . 6 ((𝜑𝑥𝐾) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))
3736ralrimdva 3160 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
38 imaeq2 6085 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938eleq1d 2829 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
4039cbvralvw 3243 . . . . 5 (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
4137, 40imbitrdi 251 . . . 4 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
4215, 41impbid 212 . . 3 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4342anbi2d 629 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
444, 43bitrd 279 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wss 3976   cuni 4931   ciun 5015  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  topGenctg 17497  Topctop 22920  TopOnctopon 22937  TopBasesctb 22973   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256
This theorem is referenced by:  subbascn  23283  txcnmpt  23653  ismtyhmeolem  37764
  Copyright terms: Public domain W3C validator