MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Visualization version   GIF version

Theorem tgcn 22403
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
tgcn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 iscn 22386 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
6 topontop 22062 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
72, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
85, 7eqeltrrd 2840 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
9 tgclb 22120 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
108, 9sylibr 233 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
11 bastg 22116 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1210, 11syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1312, 5sseqtrrd 3962 . . . . 5 (𝜑𝐵𝐾)
14 ssralv 3987 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
1513, 14syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
165eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑥𝐾𝑥 ∈ (topGen‘𝐵)))
17 eltg3 22112 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1810, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1916, 18bitrd 278 . . . . . . . 8 (𝜑 → (𝑥𝐾 ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
20 ssralv 3987 . . . . . . . . . . . 12 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
21 topontop 22062 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
221, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
23 iunopn 22047 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
2423ex 413 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2620, 25sylan9r 509 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
27 imaeq2 5965 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
28 imauni 7119 . . . . . . . . . . . . . 14 (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦)
2927, 28eqtrdi 2794 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
3029eleq1d 2823 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3130imbi2d 341 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽) ↔ (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)))
3226, 31syl5ibrcom 246 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3332expimpd 454 . . . . . . . . 9 (𝜑 → ((𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3433exlimdv 1936 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3519, 34sylbid 239 . . . . . . 7 (𝜑 → (𝑥𝐾 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3635imp 407 . . . . . 6 ((𝜑𝑥𝐾) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))
3736ralrimdva 3106 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
38 imaeq2 5965 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938eleq1d 2823 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
4039cbvralvw 3383 . . . . 5 (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
4137, 40syl6ib 250 . . . 4 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
4215, 41impbid 211 . . 3 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4342anbi2d 629 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
444, 43bitrd 278 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wss 3887   cuni 4839   ciun 4924  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  topGenctg 17148  Topctop 22042  TopOnctopon 22059  TopBasesctb 22095   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by:  subbascn  22405  txcnmpt  22775  ismtyhmeolem  35962
  Copyright terms: Public domain W3C validator