MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Visualization version   GIF version

Theorem metnrmlem2 24901
Description: Lemma for metnrm 24903. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
Assertion
Ref Expression
metnrmlem2 (𝜑 → (𝑈𝐽𝑇𝑈))
Distinct variable groups:   𝑥,𝑦,𝑡,𝐷   𝑡,𝐽,𝑦   𝜑,𝑡   𝑡,𝑇,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦   𝑡,𝑋,𝑥,𝑦   𝑡,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑡)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
2 metnrmlem.1 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntop 24471 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ Top)
62adantr 480 . . . . . 6 ((𝜑𝑡𝑇) → 𝐷 ∈ (∞Met‘𝑋))
7 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
8 eqid 2740 . . . . . . . . . 10 𝐽 = 𝐽
98cldss 23058 . . . . . . . . 9 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
107, 9syl 17 . . . . . . . 8 (𝜑𝑇 𝐽)
113mopnuni 24472 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
122, 11syl 17 . . . . . . . 8 (𝜑𝑋 = 𝐽)
1310, 12sseqtrrd 4050 . . . . . . 7 (𝜑𝑇𝑋)
1413sselda 4008 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑋)
15 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
16 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
17 metnrmlem.4 . . . . . . . . . 10 (𝜑 → (𝑆𝑇) = ∅)
1815, 3, 2, 16, 7, 17metnrmlem1a 24899 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
1918simprd 495 . . . . . . . 8 ((𝜑𝑡𝑇) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
2019rphalfcld 13111 . . . . . . 7 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
2120rpxrd 13100 . . . . . 6 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
223blopn 24534 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
236, 14, 21, 22syl3anc 1371 . . . . 5 ((𝜑𝑡𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
2423ralrimiva 3152 . . . 4 (𝜑 → ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
25 iunopn 22925 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽) → 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
265, 24, 25syl2anc 583 . . 3 (𝜑 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
271, 26eqeltrid 2848 . 2 (𝜑𝑈𝐽)
28 blcntr 24444 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
296, 14, 20, 28syl3anc 1371 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3029snssd 4834 . . . . 5 ((𝜑𝑡𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3130ralrimiva 3152 . . . 4 (𝜑 → ∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
32 ss2iun 5033 . . . 4 (∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) → 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3331, 32syl 17 . . 3 (𝜑 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
34 iunid 5083 . . . 4 𝑡𝑇 {𝑡} = 𝑇
3534eqcomi 2749 . . 3 𝑇 = 𝑡𝑇 {𝑡}
3633, 35, 13sstr4g 4054 . 2 (𝜑𝑇𝑈)
3727, 36jca 511 1 (𝜑 → (𝑈𝐽𝑇𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  c0 4352  ifcif 4548  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  infcinf 9510  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377  Topctop 22920  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050
This theorem is referenced by:  metnrmlem3  24902
  Copyright terms: Public domain W3C validator