MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Visualization version   GIF version

Theorem metnrmlem2 24725
Description: Lemma for metnrm 24727. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
Assertion
Ref Expression
metnrmlem2 (𝜑 → (𝑈𝐽𝑇𝑈))
Distinct variable groups:   𝑥,𝑦,𝑡,𝐷   𝑡,𝐽,𝑦   𝜑,𝑡   𝑡,𝑇,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦   𝑡,𝑋,𝑥,𝑦   𝑡,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑡)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
2 metnrmlem.1 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntop 24304 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ Top)
62adantr 480 . . . . . 6 ((𝜑𝑡𝑇) → 𝐷 ∈ (∞Met‘𝑋))
7 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
8 eqid 2729 . . . . . . . . . 10 𝐽 = 𝐽
98cldss 22892 . . . . . . . . 9 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
107, 9syl 17 . . . . . . . 8 (𝜑𝑇 𝐽)
113mopnuni 24305 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
122, 11syl 17 . . . . . . . 8 (𝜑𝑋 = 𝐽)
1310, 12sseqtrrd 3981 . . . . . . 7 (𝜑𝑇𝑋)
1413sselda 3943 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑋)
15 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
16 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
17 metnrmlem.4 . . . . . . . . . 10 (𝜑 → (𝑆𝑇) = ∅)
1815, 3, 2, 16, 7, 17metnrmlem1a 24723 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
1918simprd 495 . . . . . . . 8 ((𝜑𝑡𝑇) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
2019rphalfcld 12983 . . . . . . 7 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
2120rpxrd 12972 . . . . . 6 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
223blopn 24364 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
236, 14, 21, 22syl3anc 1373 . . . . 5 ((𝜑𝑡𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
2423ralrimiva 3125 . . . 4 (𝜑 → ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
25 iunopn 22761 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽) → 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
265, 24, 25syl2anc 584 . . 3 (𝜑 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
271, 26eqeltrid 2832 . 2 (𝜑𝑈𝐽)
28 blcntr 24277 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
296, 14, 20, 28syl3anc 1373 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3029snssd 4769 . . . . 5 ((𝜑𝑡𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3130ralrimiva 3125 . . . 4 (𝜑 → ∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
32 ss2iun 4970 . . . 4 (∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) → 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3331, 32syl 17 . . 3 (𝜑 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
34 iunid 5019 . . . 4 𝑡𝑇 {𝑡} = 𝑇
3534eqcomi 2738 . . 3 𝑇 = 𝑡𝑇 {𝑡}
3633, 35, 13sstr4g 3997 . 2 (𝜑𝑇𝑈)
3727, 36jca 511 1 (𝜑 → (𝑈𝐽𝑇𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  c0 4292  ifcif 4484  {csn 4585   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  infcinf 9368  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  +crp 12927  ∞Metcxmet 21225  ballcbl 21227  MetOpencmopn 21230  Topctop 22756  Clsdccld 22879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884
This theorem is referenced by:  metnrmlem3  24726
  Copyright terms: Public domain W3C validator