MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Visualization version   GIF version

Theorem metnrmlem2 24749
Description: Lemma for metnrm 24751. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
Assertion
Ref Expression
metnrmlem2 (𝜑 → (𝑈𝐽𝑇𝑈))
Distinct variable groups:   𝑥,𝑦,𝑡,𝐷   𝑡,𝐽,𝑦   𝜑,𝑡   𝑡,𝑇,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦   𝑡,𝑋,𝑥,𝑦   𝑡,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑡)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
2 metnrmlem.1 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntop 24328 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ Top)
62adantr 480 . . . . . 6 ((𝜑𝑡𝑇) → 𝐷 ∈ (∞Met‘𝑋))
7 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
8 eqid 2729 . . . . . . . . . 10 𝐽 = 𝐽
98cldss 22916 . . . . . . . . 9 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
107, 9syl 17 . . . . . . . 8 (𝜑𝑇 𝐽)
113mopnuni 24329 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
122, 11syl 17 . . . . . . . 8 (𝜑𝑋 = 𝐽)
1310, 12sseqtrrd 3984 . . . . . . 7 (𝜑𝑇𝑋)
1413sselda 3946 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑋)
15 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
16 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
17 metnrmlem.4 . . . . . . . . . 10 (𝜑 → (𝑆𝑇) = ∅)
1815, 3, 2, 16, 7, 17metnrmlem1a 24747 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
1918simprd 495 . . . . . . . 8 ((𝜑𝑡𝑇) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
2019rphalfcld 13007 . . . . . . 7 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
2120rpxrd 12996 . . . . . 6 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
223blopn 24388 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
236, 14, 21, 22syl3anc 1373 . . . . 5 ((𝜑𝑡𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
2423ralrimiva 3125 . . . 4 (𝜑 → ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
25 iunopn 22785 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽) → 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
265, 24, 25syl2anc 584 . . 3 (𝜑 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
271, 26eqeltrid 2832 . 2 (𝜑𝑈𝐽)
28 blcntr 24301 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
296, 14, 20, 28syl3anc 1373 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3029snssd 4773 . . . . 5 ((𝜑𝑡𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3130ralrimiva 3125 . . . 4 (𝜑 → ∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
32 ss2iun 4974 . . . 4 (∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) → 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3331, 32syl 17 . . 3 (𝜑 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
34 iunid 5024 . . . 4 𝑡𝑇 {𝑡} = 𝑇
3534eqcomi 2738 . . 3 𝑇 = 𝑡𝑇 {𝑡}
3633, 35, 13sstr4g 4000 . 2 (𝜑𝑇𝑈)
3727, 36jca 511 1 (𝜑 → (𝑈𝐽𝑇𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  infcinf 9392  0cc0 11068  1c1 11069  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951  ∞Metcxmet 21249  ballcbl 21251  MetOpencmopn 21254  Topctop 22780  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908
This theorem is referenced by:  metnrmlem3  24750
  Copyright terms: Public domain W3C validator