Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval3N Structured version   Visualization version   GIF version

Theorem mapdval3N 41610
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval2.h 𝐻 = (LHyp‘𝐾)
mapdval2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval2.s 𝑆 = (LSubSp‘𝑈)
mapdval2.n 𝑁 = (LSpan‘𝑈)
mapdval2.f 𝐹 = (LFnl‘𝑈)
mapdval2.l 𝐿 = (LKer‘𝑈)
mapdval2.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval2.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval2.t (𝜑𝑇𝑆)
mapdval2.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdval3N (𝜑 → (𝑀𝑇) = 𝑣𝑇 {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})})
Distinct variable groups:   𝑣,𝐶   𝑓,𝑔,𝐹   𝑓,𝐾   𝑣,𝑔,𝐿   𝑣,𝑁   𝑔,𝑂,𝑣   𝑣,𝑓,𝑇   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣   𝐶,𝑓
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝑆(𝑣,𝑓,𝑔)   𝑇(𝑔)   𝑈(𝑓,𝑔)   𝐹(𝑣)   𝐻(𝑣,𝑓,𝑔)   𝐾(𝑣,𝑔)   𝐿(𝑓)   𝑀(𝑣,𝑓,𝑔)   𝑁(𝑓,𝑔)   𝑂(𝑓)   𝑊(𝑣,𝑔)

Proof of Theorem mapdval3N
StepHypRef Expression
1 mapdval2.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval2.s . . 3 𝑆 = (LSubSp‘𝑈)
4 mapdval2.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdval2.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval2.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval2.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval2.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval2.t . . 3 (𝜑𝑇𝑆)
11 mapdval2.c . . 3 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 41609 . 2 (𝜑 → (𝑀𝑇) = {𝑓𝐶 ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})})
13 iunrab 5001 . 2 𝑣𝑇 {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})} = {𝑓𝐶 ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})}
1412, 13eqtr4di 2782 1 (𝜑 → (𝑀𝑇) = 𝑣𝑇 {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  {csn 4577   ciun 4941  cfv 6482  LSubSpclss 20834  LSpanclspn 20874  LFnlclfn 39036  LKerclk 39064  HLchlt 39329  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38955  df-lshyp 38956  df-lfl 39037  df-lkr 39065  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-mapd 41604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator