Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunpreima Structured version   Visualization version   GIF version

Theorem iunpreima 30805
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
iunpreima (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4925 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
21a1i 11 . . . 4 (Fun 𝐹 → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
32rabbidv 3404 . . 3 (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
4 funfn 6448 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
5 fncnvima2 6920 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
64, 5sylbi 216 . . 3 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
7 iunrab 4978 . . . 4 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵}
87a1i 11 . . 3 (Fun 𝐹 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
93, 6, 83eqtr4d 2788 . 2 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
10 fncnvima2 6920 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
114, 10sylbi 216 . . 3 (Fun 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
1211iuneq2d 4950 . 2 (Fun 𝐹 𝑥𝐴 (𝐹𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
139, 12eqtr4d 2781 1 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  {crab 3067   ciun 4921  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  elrspunidl  31508
  Copyright terms: Public domain W3C validator