Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunpreima Structured version   Visualization version   GIF version

Theorem iunpreima 32466
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
iunpreima (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4955 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
21a1i 11 . . . 4 (Fun 𝐹 → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
32rabbidv 3410 . . 3 (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
4 funfn 6530 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
5 fncnvima2 7015 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
64, 5sylbi 217 . . 3 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
7 iunrab 5011 . . . 4 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵}
87a1i 11 . . 3 (Fun 𝐹 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
93, 6, 83eqtr4d 2774 . 2 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
10 fncnvima2 7015 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
114, 10sylbi 217 . . 3 (Fun 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
1211iuneq2d 4982 . 2 (Fun 𝐹 𝑥𝐴 (𝐹𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
139, 12eqtr4d 2767 1 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3402   ciun 4951  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  elrspunidl  33372
  Copyright terms: Public domain W3C validator