Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunpreima Structured version   Visualization version   GIF version

Theorem iunpreima 32587
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
iunpreima (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 5019 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
21a1i 11 . . . 4 (Fun 𝐹 → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
32rabbidv 3451 . . 3 (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
4 funfn 6608 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
5 fncnvima2 7094 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
64, 5sylbi 217 . . 3 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
7 iunrab 5075 . . . 4 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵}
87a1i 11 . . 3 (Fun 𝐹 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
93, 6, 83eqtr4d 2790 . 2 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
10 fncnvima2 7094 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
114, 10sylbi 217 . . 3 (Fun 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
1211iuneq2d 5045 . 2 (Fun 𝐹 𝑥𝐴 (𝐹𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
139, 12eqtr4d 2783 1 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  {crab 3443   ciun 5015  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  elrspunidl  33421
  Copyright terms: Public domain W3C validator