![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunpreima | Structured version Visualization version GIF version |
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
iunpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4963 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
3 | 2 | rabbidv 3418 | . . 3 ⊢ (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
4 | funfn 6536 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
5 | fncnvima2 7016 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) | |
6 | 4, 5 | sylbi 216 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) |
7 | iunrab 5017 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵} | |
8 | 7 | a1i 11 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
9 | 3, 6, 8 | 3eqtr4d 2787 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
10 | fncnvima2 7016 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) | |
11 | 4, 10 | sylbi 216 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
12 | 11 | iuneq2d 4988 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
13 | 9, 12 | eqtr4d 2780 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 {crab 3410 ∪ ciun 4959 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fun wfun 6495 Fn wfn 6496 ‘cfv 6501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-fv 6509 |
This theorem is referenced by: elrspunidl 32243 |
Copyright terms: Public domain | W3C validator |