| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunpreima | Structured version Visualization version GIF version | ||
| Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| iunpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4995 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
| 3 | 2 | rabbidv 3444 | . . 3 ⊢ (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
| 4 | funfn 6596 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 5 | fncnvima2 7081 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) | |
| 6 | 4, 5 | sylbi 217 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) |
| 7 | iunrab 5052 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵} | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
| 9 | 3, 6, 8 | 3eqtr4d 2787 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
| 10 | fncnvima2 7081 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) | |
| 11 | 4, 10 | sylbi 217 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
| 12 | 11 | iuneq2d 5022 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
| 13 | 9, 12 | eqtr4d 2780 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ∪ ciun 4991 ◡ccnv 5684 dom cdm 5685 “ cima 5688 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: elrspunidl 33456 |
| Copyright terms: Public domain | W3C validator |