Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunpreima Structured version   Visualization version   GIF version

Theorem iunpreima 32545
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
iunpreima (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4971 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
21a1i 11 . . . 4 (Fun 𝐹 → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
32rabbidv 3423 . . 3 (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
4 funfn 6566 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
5 fncnvima2 7051 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
64, 5sylbi 217 . . 3 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝑥𝐴 𝐵})
7 iunrab 5028 . . . 4 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵}
87a1i 11 . . 3 (Fun 𝐹 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥𝐴 (𝐹𝑦) ∈ 𝐵})
93, 6, 83eqtr4d 2780 . 2 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
10 fncnvima2 7051 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
114, 10sylbi 217 . . 3 (Fun 𝐹 → (𝐹𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
1211iuneq2d 4998 . 2 (Fun 𝐹 𝑥𝐴 (𝐹𝐵) = 𝑥𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ∈ 𝐵})
139, 12eqtr4d 2773 1 (Fun 𝐹 → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wrex 3060  {crab 3415   ciun 4967  ccnv 5653  dom cdm 5654  cima 5657  Fun wfun 6525   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  elrspunidl  33443
  Copyright terms: Public domain W3C validator