Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunpreima | Structured version Visualization version GIF version |
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
iunpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4928 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
3 | 2 | rabbidv 3414 | . . 3 ⊢ (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
4 | funfn 6464 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
5 | fncnvima2 6938 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) | |
6 | 4, 5 | sylbi 216 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) |
7 | iunrab 4982 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵} | |
8 | 7 | a1i 11 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
9 | 3, 6, 8 | 3eqtr4d 2788 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
10 | fncnvima2 6938 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) | |
11 | 4, 10 | sylbi 216 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
12 | 11 | iuneq2d 4953 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
13 | 9, 12 | eqtr4d 2781 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ∪ ciun 4924 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: elrspunidl 31606 |
Copyright terms: Public domain | W3C validator |