![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiphp3d | Structured version Visualization version GIF version |
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
Ref | Expression |
---|---|
fiphp3d.a | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
fiphp3d.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fiphp3d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
Ref | Expression |
---|---|
fiphp3d | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ominf 9224 | . . . . 5 ⊢ ¬ ω ∈ Fin | |
2 | iunrab 5032 | . . . . . . . 8 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} | |
3 | fiphp3d.c | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
4 | risset 3229 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝐷) | |
5 | eqcom 2738 | . . . . . . . . . . . . 13 ⊢ (𝑦 = 𝐷 ↔ 𝐷 = 𝑦) | |
6 | 5 | rexbii 3093 | . . . . . . . . . . . 12 ⊢ (∃𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
7 | 4, 6 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
8 | 3, 7 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
9 | 8 | ralrimiva 3145 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
10 | rabid2 3450 | . . . . . . . . 9 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦}) |
12 | 2, 11 | eqtr4id 2790 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = 𝐴) |
13 | 12 | eleq1d 2817 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin)) |
14 | fiphp3d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ≈ ℕ) | |
15 | nnenom 13910 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
16 | entr 8968 | . . . . . . . 8 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω) | |
17 | 14, 15, 16 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≈ ω) |
18 | enfi 9156 | . . . . . . 7 ⊢ (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin)) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin)) |
20 | 13, 19 | bitrd 278 | . . . . 5 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin)) |
21 | 1, 20 | mtbiri 326 | . . . 4 ⊢ (𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
22 | fiphp3d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
23 | iunfi 9306 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
24 | 22, 23 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
25 | 21, 24 | mtand 814 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
26 | rexnal 3099 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
28 | 17, 15 | jctir 521 | . . . . 5 ⊢ (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω)) |
29 | ssrab2 4057 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 | |
30 | 29 | jctl 524 | . . . . 5 ⊢ (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) |
31 | ctbnfien 41232 | . . . . 5 ⊢ (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | |
32 | 28, 30, 31 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
33 | 32 | ex 413 | . . 3 ⊢ (𝜑 → (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
34 | 33 | reximdv 3169 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
35 | 27, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∃wrex 3069 {crab 3418 ⊆ wss 3928 ∪ ciun 4974 class class class wbr 5125 ωcom 7822 ≈ cen 8902 Fincfn 8905 ℕcn 12177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-int 4928 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-er 8670 df-en 8906 df-dom 8907 df-sdom 8908 df-fin 8909 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-nn 12178 df-n0 12438 df-z 12524 df-uz 12788 |
This theorem is referenced by: pellexlem5 41247 |
Copyright terms: Public domain | W3C validator |