Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Visualization version   GIF version

Theorem fiphp3d 41859
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a (𝜑𝐴 ≈ ℕ)
fiphp3d.b (𝜑𝐵 ∈ Fin)
fiphp3d.c ((𝜑𝑥𝐴) → 𝐷𝐵)
Assertion
Ref Expression
fiphp3d (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 9260 . . . . 5 ¬ ω ∈ Fin
2 iunrab 5054 . . . . . . . 8 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦}
3 fiphp3d.c . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 risset 3228 . . . . . . . . . . . 12 (𝐷𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝐷)
5 eqcom 2737 . . . . . . . . . . . . 13 (𝑦 = 𝐷𝐷 = 𝑦)
65rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦 = 𝐷 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
74, 6bitri 274 . . . . . . . . . . 11 (𝐷𝐵 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
83, 7sylib 217 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝐷 = 𝑦)
98ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
10 rabid2 3462 . . . . . . . . 9 (𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦} ↔ ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
119, 10sylibr 233 . . . . . . . 8 (𝜑𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦})
122, 11eqtr4id 2789 . . . . . . 7 (𝜑 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = 𝐴)
1312eleq1d 2816 . . . . . 6 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin))
14 fiphp3d.a . . . . . . . 8 (𝜑𝐴 ≈ ℕ)
15 nnenom 13949 . . . . . . . 8 ℕ ≈ ω
16 entr 9004 . . . . . . . 8 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
1714, 15, 16sylancl 584 . . . . . . 7 (𝜑𝐴 ≈ ω)
18 enfi 9192 . . . . . . 7 (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin))
2013, 19bitrd 278 . . . . 5 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin))
211, 20mtbiri 326 . . . 4 (𝜑 → ¬ 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
22 fiphp3d.b . . . . 5 (𝜑𝐵 ∈ Fin)
23 iunfi 9342 . . . . 5 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2422, 23sylan 578 . . . 4 ((𝜑 ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2521, 24mtand 812 . . 3 (𝜑 → ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
26 rexnal 3098 . . 3 (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2725, 26sylibr 233 . 2 (𝜑 → ∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2817, 15jctir 519 . . . . 5 (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω))
29 ssrab2 4076 . . . . . 6 {𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴
3029jctl 522 . . . . 5 (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin))
31 ctbnfien 41858 . . . . 5 (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3228, 30, 31syl2an 594 . . . 4 ((𝜑 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3332ex 411 . . 3 (𝜑 → (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3433reximdv 3168 . 2 (𝜑 → (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3527, 34mpd 15 1 (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068  {crab 3430  wss 3947   ciun 4996   class class class wbr 5147  ωcom 7857  cen 8938  Fincfn 8941  cn 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827
This theorem is referenced by:  pellexlem5  41873
  Copyright terms: Public domain W3C validator