| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fiphp3d | Structured version Visualization version GIF version | ||
| Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| fiphp3d.a | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
| fiphp3d.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fiphp3d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fiphp3d | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf 9154 | . . . . 5 ⊢ ¬ ω ∈ Fin | |
| 2 | iunrab 5003 | . . . . . . . 8 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} | |
| 3 | fiphp3d.c | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
| 4 | risset 3207 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝐷) | |
| 5 | eqcom 2738 | . . . . . . . . . . . . 13 ⊢ (𝑦 = 𝐷 ↔ 𝐷 = 𝑦) | |
| 6 | 5 | rexbii 3079 | . . . . . . . . . . . 12 ⊢ (∃𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 7 | 4, 6 | bitri 275 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 8 | 3, 7 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 9 | 8 | ralrimiva 3124 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 10 | rabid2 3428 | . . . . . . . . 9 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦}) |
| 12 | 2, 11 | eqtr4id 2785 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = 𝐴) |
| 13 | 12 | eleq1d 2816 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 14 | fiphp3d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ≈ ℕ) | |
| 15 | nnenom 13893 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 16 | entr 8934 | . . . . . . . 8 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω) | |
| 17 | 14, 15, 16 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≈ ω) |
| 18 | enfi 9102 | . . . . . . 7 ⊢ (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin)) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin)) |
| 20 | 13, 19 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin)) |
| 21 | 1, 20 | mtbiri 327 | . . . 4 ⊢ (𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 22 | fiphp3d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 23 | iunfi 9233 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 24 | 22, 23 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 25 | 21, 24 | mtand 815 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 26 | rexnal 3084 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 28 | 17, 15 | jctir 520 | . . . . 5 ⊢ (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω)) |
| 29 | ssrab2 4029 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 | |
| 30 | 29 | jctl 523 | . . . . 5 ⊢ (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) |
| 31 | ctbnfien 42916 | . . . . 5 ⊢ (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | |
| 32 | 28, 30, 31 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 34 | 33 | reximdv 3147 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 35 | 27, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∪ ciun 4941 class class class wbr 5093 ωcom 7802 ≈ cen 8872 Fincfn 8875 ℕcn 12131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 |
| This theorem is referenced by: pellexlem5 42931 |
| Copyright terms: Public domain | W3C validator |