| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fiphp3d | Structured version Visualization version GIF version | ||
| Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| fiphp3d.a | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
| fiphp3d.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fiphp3d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fiphp3d | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf 9205 | . . . . 5 ⊢ ¬ ω ∈ Fin | |
| 2 | iunrab 5016 | . . . . . . . 8 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} | |
| 3 | fiphp3d.c | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
| 4 | risset 3212 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝐷) | |
| 5 | eqcom 2736 | . . . . . . . . . . . . 13 ⊢ (𝑦 = 𝐷 ↔ 𝐷 = 𝑦) | |
| 6 | 5 | rexbii 3076 | . . . . . . . . . . . 12 ⊢ (∃𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 7 | 4, 6 | bitri 275 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 8 | 3, 7 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 9 | 8 | ralrimiva 3125 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 10 | rabid2 3439 | . . . . . . . . 9 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦}) |
| 12 | 2, 11 | eqtr4id 2783 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = 𝐴) |
| 13 | 12 | eleq1d 2813 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 14 | fiphp3d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ≈ ℕ) | |
| 15 | nnenom 13945 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 16 | entr 8977 | . . . . . . . 8 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω) | |
| 17 | 14, 15, 16 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≈ ω) |
| 18 | enfi 9151 | . . . . . . 7 ⊢ (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin)) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin)) |
| 20 | 13, 19 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin)) |
| 21 | 1, 20 | mtbiri 327 | . . . 4 ⊢ (𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 22 | fiphp3d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 23 | iunfi 9294 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 24 | 22, 23 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 25 | 21, 24 | mtand 815 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 26 | rexnal 3082 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 28 | 17, 15 | jctir 520 | . . . . 5 ⊢ (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω)) |
| 29 | ssrab2 4043 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 | |
| 30 | 29 | jctl 523 | . . . . 5 ⊢ (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) |
| 31 | ctbnfien 42806 | . . . . 5 ⊢ (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | |
| 32 | 28, 30, 31 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 34 | 33 | reximdv 3148 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 35 | 27, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∪ ciun 4955 class class class wbr 5107 ωcom 7842 ≈ cen 8915 Fincfn 8918 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: pellexlem5 42821 |
| Copyright terms: Public domain | W3C validator |