![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiphp3d | Structured version Visualization version GIF version |
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
Ref | Expression |
---|---|
fiphp3d.a | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
fiphp3d.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fiphp3d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
Ref | Expression |
---|---|
fiphp3d | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ominf 9260 | . . . . 5 ⊢ ¬ ω ∈ Fin | |
2 | iunrab 5054 | . . . . . . . 8 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} | |
3 | fiphp3d.c | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
4 | risset 3228 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝐷) | |
5 | eqcom 2737 | . . . . . . . . . . . . 13 ⊢ (𝑦 = 𝐷 ↔ 𝐷 = 𝑦) | |
6 | 5 | rexbii 3092 | . . . . . . . . . . . 12 ⊢ (∃𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
7 | 4, 6 | bitri 274 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
8 | 3, 7 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
9 | 8 | ralrimiva 3144 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
10 | rabid2 3462 | . . . . . . . . 9 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦}) |
12 | 2, 11 | eqtr4id 2789 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = 𝐴) |
13 | 12 | eleq1d 2816 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin)) |
14 | fiphp3d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ≈ ℕ) | |
15 | nnenom 13949 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
16 | entr 9004 | . . . . . . . 8 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω) | |
17 | 14, 15, 16 | sylancl 584 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≈ ω) |
18 | enfi 9192 | . . . . . . 7 ⊢ (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin)) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin)) |
20 | 13, 19 | bitrd 278 | . . . . 5 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin)) |
21 | 1, 20 | mtbiri 326 | . . . 4 ⊢ (𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
22 | fiphp3d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
23 | iunfi 9342 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
24 | 22, 23 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
25 | 21, 24 | mtand 812 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
26 | rexnal 3098 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
28 | 17, 15 | jctir 519 | . . . . 5 ⊢ (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω)) |
29 | ssrab2 4076 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 | |
30 | 29 | jctl 522 | . . . . 5 ⊢ (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) |
31 | ctbnfien 41858 | . . . . 5 ⊢ (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | |
32 | 28, 30, 31 | syl2an 594 | . . . 4 ⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
33 | 32 | ex 411 | . . 3 ⊢ (𝜑 → (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
34 | 33 | reximdv 3168 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
35 | 27, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 {crab 3430 ⊆ wss 3947 ∪ ciun 4996 class class class wbr 5147 ωcom 7857 ≈ cen 8938 Fincfn 8941 ℕcn 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 |
This theorem is referenced by: pellexlem5 41873 |
Copyright terms: Public domain | W3C validator |