Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Visualization version   GIF version

Theorem fiphp3d 42842
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a (𝜑𝐴 ≈ ℕ)
fiphp3d.b (𝜑𝐵 ∈ Fin)
fiphp3d.c ((𝜑𝑥𝐴) → 𝐷𝐵)
Assertion
Ref Expression
fiphp3d (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 9266 . . . . 5 ¬ ω ∈ Fin
2 iunrab 5028 . . . . . . . 8 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦}
3 fiphp3d.c . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 risset 3217 . . . . . . . . . . . 12 (𝐷𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝐷)
5 eqcom 2742 . . . . . . . . . . . . 13 (𝑦 = 𝐷𝐷 = 𝑦)
65rexbii 3083 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦 = 𝐷 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
74, 6bitri 275 . . . . . . . . . . 11 (𝐷𝐵 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
83, 7sylib 218 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝐷 = 𝑦)
98ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
10 rabid2 3449 . . . . . . . . 9 (𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦} ↔ ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
119, 10sylibr 234 . . . . . . . 8 (𝜑𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦})
122, 11eqtr4id 2789 . . . . . . 7 (𝜑 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = 𝐴)
1312eleq1d 2819 . . . . . 6 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin))
14 fiphp3d.a . . . . . . . 8 (𝜑𝐴 ≈ ℕ)
15 nnenom 13998 . . . . . . . 8 ℕ ≈ ω
16 entr 9020 . . . . . . . 8 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
1714, 15, 16sylancl 586 . . . . . . 7 (𝜑𝐴 ≈ ω)
18 enfi 9201 . . . . . . 7 (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin))
2013, 19bitrd 279 . . . . 5 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin))
211, 20mtbiri 327 . . . 4 (𝜑 → ¬ 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
22 fiphp3d.b . . . . 5 (𝜑𝐵 ∈ Fin)
23 iunfi 9355 . . . . 5 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2422, 23sylan 580 . . . 4 ((𝜑 ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2521, 24mtand 815 . . 3 (𝜑 → ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
26 rexnal 3089 . . 3 (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2725, 26sylibr 234 . 2 (𝜑 → ∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2817, 15jctir 520 . . . . 5 (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω))
29 ssrab2 4055 . . . . . 6 {𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴
3029jctl 523 . . . . 5 (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin))
31 ctbnfien 42841 . . . . 5 (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3228, 30, 31syl2an 596 . . . 4 ((𝜑 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3332ex 412 . . 3 (𝜑 → (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3433reximdv 3155 . 2 (𝜑 → (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3527, 34mpd 15 1 (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926   ciun 4967   class class class wbr 5119  ωcom 7861  cen 8956  Fincfn 8959  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853
This theorem is referenced by:  pellexlem5  42856
  Copyright terms: Public domain W3C validator