Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Visualization version   GIF version

Theorem fiphp3d 40557
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a (𝜑𝐴 ≈ ℕ)
fiphp3d.b (𝜑𝐵 ∈ Fin)
fiphp3d.c ((𝜑𝑥𝐴) → 𝐷𝐵)
Assertion
Ref Expression
fiphp3d (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 8964 . . . . 5 ¬ ω ∈ Fin
2 iunrab 4978 . . . . . . . 8 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦}
3 fiphp3d.c . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 risset 3193 . . . . . . . . . . . 12 (𝐷𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝐷)
5 eqcom 2745 . . . . . . . . . . . . 13 (𝑦 = 𝐷𝐷 = 𝑦)
65rexbii 3177 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦 = 𝐷 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
74, 6bitri 274 . . . . . . . . . . 11 (𝐷𝐵 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
83, 7sylib 217 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝐷 = 𝑦)
98ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
10 rabid2 3307 . . . . . . . . 9 (𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦} ↔ ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
119, 10sylibr 233 . . . . . . . 8 (𝜑𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦})
122, 11eqtr4id 2798 . . . . . . 7 (𝜑 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = 𝐴)
1312eleq1d 2823 . . . . . 6 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin))
14 fiphp3d.a . . . . . . . 8 (𝜑𝐴 ≈ ℕ)
15 nnenom 13628 . . . . . . . 8 ℕ ≈ ω
16 entr 8747 . . . . . . . 8 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
1714, 15, 16sylancl 585 . . . . . . 7 (𝜑𝐴 ≈ ω)
18 enfi 8933 . . . . . . 7 (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin))
2013, 19bitrd 278 . . . . 5 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin))
211, 20mtbiri 326 . . . 4 (𝜑 → ¬ 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
22 fiphp3d.b . . . . 5 (𝜑𝐵 ∈ Fin)
23 iunfi 9037 . . . . 5 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2422, 23sylan 579 . . . 4 ((𝜑 ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2521, 24mtand 812 . . 3 (𝜑 → ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
26 rexnal 3165 . . 3 (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2725, 26sylibr 233 . 2 (𝜑 → ∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2817, 15jctir 520 . . . . 5 (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω))
29 ssrab2 4009 . . . . . 6 {𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴
3029jctl 523 . . . . 5 (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin))
31 ctbnfien 40556 . . . . 5 (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3228, 30, 31syl2an 595 . . . 4 ((𝜑 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3332ex 412 . . 3 (𝜑 → (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3433reximdv 3201 . 2 (𝜑 → (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3527, 34mpd 15 1 (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   ciun 4921   class class class wbr 5070  ωcom 7687  cen 8688  Fincfn 8691  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  pellexlem5  40571
  Copyright terms: Public domain W3C validator