Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Visualization version   GIF version

Theorem fiphp3d 42831
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a (𝜑𝐴 ≈ ℕ)
fiphp3d.b (𝜑𝐵 ∈ Fin)
fiphp3d.c ((𝜑𝑥𝐴) → 𝐷𝐵)
Assertion
Ref Expression
fiphp3d (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 9143 . . . . 5 ¬ ω ∈ Fin
2 iunrab 4999 . . . . . . . 8 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦}
3 fiphp3d.c . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐵)
4 risset 3205 . . . . . . . . . . . 12 (𝐷𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝐷)
5 eqcom 2737 . . . . . . . . . . . . 13 (𝑦 = 𝐷𝐷 = 𝑦)
65rexbii 3077 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦 = 𝐷 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
74, 6bitri 275 . . . . . . . . . . 11 (𝐷𝐵 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
83, 7sylib 218 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝐷 = 𝑦)
98ralrimiva 3122 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
10 rabid2 3426 . . . . . . . . 9 (𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦} ↔ ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
119, 10sylibr 234 . . . . . . . 8 (𝜑𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦})
122, 11eqtr4id 2784 . . . . . . 7 (𝜑 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = 𝐴)
1312eleq1d 2814 . . . . . 6 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin))
14 fiphp3d.a . . . . . . . 8 (𝜑𝐴 ≈ ℕ)
15 nnenom 13879 . . . . . . . 8 ℕ ≈ ω
16 entr 8923 . . . . . . . 8 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
1714, 15, 16sylancl 586 . . . . . . 7 (𝜑𝐴 ≈ ω)
18 enfi 9091 . . . . . . 7 (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin))
2013, 19bitrd 279 . . . . 5 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin))
211, 20mtbiri 327 . . . 4 (𝜑 → ¬ 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
22 fiphp3d.b . . . . 5 (𝜑𝐵 ∈ Fin)
23 iunfi 9222 . . . . 5 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2422, 23sylan 580 . . . 4 ((𝜑 ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2521, 24mtand 815 . . 3 (𝜑 → ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
26 rexnal 3082 . . 3 (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2725, 26sylibr 234 . 2 (𝜑 → ∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2817, 15jctir 520 . . . . 5 (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω))
29 ssrab2 4028 . . . . . 6 {𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴
3029jctl 523 . . . . 5 (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin))
31 ctbnfien 42830 . . . . 5 (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3228, 30, 31syl2an 596 . . . 4 ((𝜑 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3332ex 412 . . 3 (𝜑 → (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3433reximdv 3145 . 2 (𝜑 → (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3527, 34mpd 15 1 (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393  wss 3900   ciun 4939   class class class wbr 5089  ωcom 7791  cen 8861  Fincfn 8864  cn 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725
This theorem is referenced by:  pellexlem5  42845
  Copyright terms: Public domain W3C validator