| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fiphp3d | Structured version Visualization version GIF version | ||
| Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| fiphp3d.a | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
| fiphp3d.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fiphp3d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fiphp3d | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf 9211 | . . . . 5 ⊢ ¬ ω ∈ Fin | |
| 2 | iunrab 5018 | . . . . . . . 8 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} | |
| 3 | fiphp3d.c | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
| 4 | risset 3213 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑦 = 𝐷) | |
| 5 | eqcom 2737 | . . . . . . . . . . . . 13 ⊢ (𝑦 = 𝐷 ↔ 𝐷 = 𝑦) | |
| 6 | 5 | rexbii 3077 | . . . . . . . . . . . 12 ⊢ (∃𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 7 | 4, 6 | bitri 275 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 8 | 3, 7 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 9 | 8 | ralrimiva 3126 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) |
| 10 | rabid2 3442 | . . . . . . . . 9 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝑦) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 ∈ 𝐵 𝐷 = 𝑦}) |
| 12 | 2, 11 | eqtr4id 2784 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} = 𝐴) |
| 13 | 12 | eleq1d 2814 | . . . . . 6 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 14 | fiphp3d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ≈ ℕ) | |
| 15 | nnenom 13951 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 16 | entr 8979 | . . . . . . . 8 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω) | |
| 17 | 14, 15, 16 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≈ ω) |
| 18 | enfi 9156 | . . . . . . 7 ⊢ (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin)) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin)) |
| 20 | 13, 19 | bitrd 279 | . . . . 5 ⊢ (𝜑 → (∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin)) |
| 21 | 1, 20 | mtbiri 327 | . . . 4 ⊢ (𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 22 | fiphp3d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 23 | iunfi 9300 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 24 | 22, 23 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → ∪ 𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 25 | 21, 24 | mtand 815 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 26 | rexnal 3083 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) |
| 28 | 17, 15 | jctir 520 | . . . . 5 ⊢ (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω)) |
| 29 | ssrab2 4045 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 | |
| 30 | 29 | jctl 523 | . . . . 5 ⊢ (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) |
| 31 | ctbnfien 42799 | . . . . 5 ⊢ (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin)) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | |
| 32 | 28, 30, 31 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin) → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 34 | 33 | reximdv 3149 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 ¬ {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ∈ Fin → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ)) |
| 35 | 27, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3916 ∪ ciun 4957 class class class wbr 5109 ωcom 7844 ≈ cen 8917 Fincfn 8920 ℕcn 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 |
| This theorem is referenced by: pellexlem5 42814 |
| Copyright terms: Public domain | W3C validator |