MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpompts Structured version   Visualization version   GIF version

Theorem mpompts 8003
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
Assertion
Ref Expression
mpompts (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpompts
StepHypRef Expression
1 mpomptsx 8002 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2 iunxpconst 5692 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
32mpteq1i 5184 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
41, 3eqtri 2756 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  csb 3846  {csn 4575   ciun 4941  cmpt 5174   × cxp 5617  cfv 6486  cmpo 7354  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  offval22  8024  dfmpo  8038  mposn  8039  matgsum  22353  f1o2d2  42351
  Copyright terms: Public domain W3C validator