| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | fmpox 8046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
| 3 | iunxpconst 5711 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 4 | 3 | feq2i 6680 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4589 ∪ ciun 4955 × cxp 5636 ⟶wf 6507 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: fnmpo 8048 ovmpoelrn 8051 fmpoco 8074 eroprf 8788 omxpenlem 9042 mapxpen 9107 dffi3 9382 ixpiunwdom 9543 cantnfvalf 9618 iunfictbso 10067 axdc4lem 10408 axcclem 10410 addpqf 10897 mulpqf 10899 subf 11423 xaddf 13184 xmulf 13232 ixxf 13316 ioof 13408 fzf 13472 fzof 13617 axdc4uzlem 13948 sadcf 16423 smupf 16448 gcdf 16482 eucalgf 16553 vdwapf 16943 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 imasvscaf 17502 xpsff1o 17530 wunnat 17921 catcoppccl 18079 catcfuccl 18080 catcxpccl 18168 evlfcl 18183 hofcl 18220 mgmplusf 18577 grpsubf 18951 subgga 19232 lactghmga 19335 sylow1lem2 19529 sylow3lem1 19557 lsmssv 19573 smndlsmidm 19586 efgmf 19643 efgtf 19652 frgpuptf 19700 lmodscaf 20790 xrsds 21326 phlipf 21561 evlslem2 21986 mamucl 22288 matbas2d 22310 mamumat1cl 22326 ordtbas2 23078 iccordt 23101 txuni2 23452 xkotf 23472 txbasval 23493 tx1stc 23537 xkococn 23547 cnmpt12 23554 cnmpt21 23558 cnmpt2t 23560 cnmpt22 23561 cnmptcom 23565 cnmpt2k 23575 txswaphmeo 23692 xpstopnlem1 23696 cnmpt2plusg 23975 cnmpt2vsca 24082 prdsdsf 24255 blfvalps 24271 blfps 24294 blf 24295 stdbdmet 24404 met2ndci 24410 dscmet 24460 xrsxmet 24698 cnmpt2ds 24732 cnmpopc 24822 iimulcn 24834 iimulcnOLD 24835 ishtpy 24871 reparphti 24896 reparphtiOLD 24897 cnmpt2ip 25148 bcthlem5 25228 rrxmet 25308 dyadf 25492 itg1addlem2 25598 mbfi1fseqlem1 25616 mbfi1fseqlem3 25618 mbfi1fseqlem4 25619 mbfi1fseqlem5 25620 cxpcn3 26658 sgmf 27055 subsf 27968 midf 28703 grpodivf 30467 nvmf 30574 ipf 30642 hvsubf 30944 ofoprabco 32588 suppovss 32604 elrgspnlem2 33194 fedgmullem1 33625 fedgmullem2 33626 fedgmul 33627 sitmf 34343 cvxsconn 35230 cvmlift2lem5 35294 uncf 37593 mblfinlem1 37651 mblfinlem2 37652 sdclem1 37737 metf1o 37749 rrnval 37821 rrnmet 37823 aks6d1c3 42111 fmpocos 42222 resubf 42369 sn-subf 42417 evlselv 42575 frmx 42902 frmy 42903 ofoafg 43343 naddcnff 43351 mnringmulrcld 44217 icof 45213 fmpodg 48854 rescofuf 49079 |
| Copyright terms: Public domain | W3C validator |