Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 7893 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5658 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6588 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {csn 4566 ∪ ciun 4929 × cxp 5586 ⟶wf 6426 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: fnmpo 7895 ovmpoelrn 7898 fmpoco 7919 eroprf 8578 omxpenlem 8829 mapxpen 8895 dffi3 9151 ixpiunwdom 9310 cantnfvalf 9384 iunfictbso 9854 axdc4lem 10195 axcclem 10197 addpqf 10684 mulpqf 10686 subf 11206 xaddf 12940 xmulf 12988 ixxf 13071 ioof 13161 fzf 13225 fzof 13366 axdc4uzlem 13684 sadcf 16141 smupf 16166 gcdf 16200 eucalgf 16269 vdwapf 16654 prdsplusg 17150 prdsmulr 17151 prdsvsca 17152 prdshom 17159 imasvscaf 17231 xpsff1o 17259 wunnat 17653 wunnatOLD 17654 catcoppccl 17813 catcoppcclOLD 17814 catcfuccl 17815 catcfucclOLD 17816 catcxpccl 17905 catcxpcclOLD 17906 evlfcl 17921 hofcl 17958 mgmplusf 18317 grpsubf 18635 subgga 18887 lactghmga 18994 sylow1lem2 19185 sylow3lem1 19213 lsmssv 19229 smndlsmidm 19242 lsmidmOLD 19250 efgmf 19300 efgtf 19309 frgpuptf 19357 lmodscaf 20126 xrsds 20622 phlipf 20838 evlslem2 21270 mamucl 21529 matbas2d 21553 mamumat1cl 21569 ordtbas2 22323 iccordt 22346 txuni2 22697 xkotf 22717 txbasval 22738 tx1stc 22782 xkococn 22792 cnmpt12 22799 cnmpt21 22803 cnmpt2t 22805 cnmpt22 22806 cnmptcom 22810 cnmpt2k 22820 txswaphmeo 22937 xpstopnlem1 22941 cnmpt2plusg 23220 cnmpt2vsca 23327 prdsdsf 23501 blfvalps 23517 blfps 23540 blf 23541 stdbdmet 23653 met2ndci 23659 dscmet 23709 xrsxmet 23953 cnmpt2ds 23987 cnmpopc 24072 iimulcn 24082 ishtpy 24116 reparphti 24141 cnmpt2ip 24393 bcthlem5 24473 rrxmet 24553 dyadf 24736 itg1addlem2 24842 mbfi1fseqlem1 24861 mbfi1fseqlem3 24863 mbfi1fseqlem4 24864 mbfi1fseqlem5 24865 cxpcn3 25882 sgmf 26275 midf 27118 grpodivf 28879 nvmf 28986 ipf 29054 hvsubf 29356 ofoprabco 30980 suppovss 30996 fedgmullem1 31689 fedgmullem2 31690 fedgmul 31691 sitmf 32298 cvxsconn 33184 cvmlift2lem5 33248 uncf 35735 mblfinlem1 35793 mblfinlem2 35794 sdclem1 35880 metf1o 35892 rrnval 35964 rrnmet 35966 resubf 40344 sn-subf 40390 frmx 40715 frmy 40716 mnringmulrcld 41799 icof 42712 |
Copyright terms: Public domain | W3C validator |