![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 8055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5748 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6709 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4628 ∪ ciun 4997 × cxp 5674 ⟶wf 6539 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: fnmpo 8057 ovmpoelrn 8060 fmpoco 8083 eroprf 8811 omxpenlem 9075 mapxpen 9145 dffi3 9428 ixpiunwdom 9587 cantnfvalf 9662 iunfictbso 10111 axdc4lem 10452 axcclem 10454 addpqf 10941 mulpqf 10943 subf 11464 xaddf 13205 xmulf 13253 ixxf 13336 ioof 13426 fzf 13490 fzof 13631 axdc4uzlem 13950 sadcf 16396 smupf 16421 gcdf 16455 eucalgf 16522 vdwapf 16907 prdsplusg 17406 prdsmulr 17407 prdsvsca 17408 prdshom 17415 imasvscaf 17487 xpsff1o 17515 wunnat 17909 wunnatOLD 17910 catcoppccl 18069 catcoppcclOLD 18070 catcfuccl 18071 catcfucclOLD 18072 catcxpccl 18161 catcxpcclOLD 18162 evlfcl 18177 hofcl 18214 mgmplusf 18573 grpsubf 18904 subgga 19166 lactghmga 19275 sylow1lem2 19469 sylow3lem1 19497 lsmssv 19513 smndlsmidm 19526 efgmf 19583 efgtf 19592 frgpuptf 19640 lmodscaf 20499 xrsds 20994 phlipf 21211 evlslem2 21648 mamucl 21908 matbas2d 21932 mamumat1cl 21948 ordtbas2 22702 iccordt 22725 txuni2 23076 xkotf 23096 txbasval 23117 tx1stc 23161 xkococn 23171 cnmpt12 23178 cnmpt21 23182 cnmpt2t 23184 cnmpt22 23185 cnmptcom 23189 cnmpt2k 23199 txswaphmeo 23316 xpstopnlem1 23320 cnmpt2plusg 23599 cnmpt2vsca 23706 prdsdsf 23880 blfvalps 23896 blfps 23919 blf 23920 stdbdmet 24032 met2ndci 24038 dscmet 24088 xrsxmet 24332 cnmpt2ds 24366 cnmpopc 24451 iimulcn 24461 ishtpy 24495 reparphti 24520 cnmpt2ip 24772 bcthlem5 24852 rrxmet 24932 dyadf 25115 itg1addlem2 25221 mbfi1fseqlem1 25240 mbfi1fseqlem3 25242 mbfi1fseqlem4 25243 mbfi1fseqlem5 25244 cxpcn3 26263 sgmf 26656 midf 28065 grpodivf 29829 nvmf 29936 ipf 30004 hvsubf 30306 ofoprabco 31927 suppovss 31944 fedgmullem1 32773 fedgmullem2 32774 fedgmul 32775 sitmf 33420 cvxsconn 34303 cvmlift2lem5 34367 gg-iimulcn 35244 gg-reparphti 35247 uncf 36559 mblfinlem1 36617 mblfinlem2 36618 sdclem1 36703 metf1o 36715 rrnval 36787 rrnmet 36789 fmpocos 41148 evlselv 41247 resubf 41342 sn-subf 41389 frmx 41740 frmy 41741 ofoafg 42192 naddcnff 42200 mnringmulrcld 43075 icof 44003 |
Copyright terms: Public domain | W3C validator |