![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 8108 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5772 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6739 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 ∪ ciun 5015 × cxp 5698 ⟶wf 6569 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: fnmpo 8110 ovmpoelrn 8113 fmpoco 8136 eroprf 8873 omxpenlem 9139 mapxpen 9209 dffi3 9500 ixpiunwdom 9659 cantnfvalf 9734 iunfictbso 10183 axdc4lem 10524 axcclem 10526 addpqf 11013 mulpqf 11015 subf 11538 xaddf 13286 xmulf 13334 ixxf 13417 ioof 13507 fzf 13571 fzof 13713 axdc4uzlem 14034 sadcf 16499 smupf 16524 gcdf 16558 eucalgf 16630 vdwapf 17019 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 imasvscaf 17599 xpsff1o 17627 wunnat 18024 wunnatOLD 18025 catcoppccl 18184 catcoppcclOLD 18185 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 evlfcl 18292 hofcl 18329 mgmplusf 18688 grpsubf 19059 subgga 19340 lactghmga 19447 sylow1lem2 19641 sylow3lem1 19669 lsmssv 19685 smndlsmidm 19698 efgmf 19755 efgtf 19764 frgpuptf 19812 lmodscaf 20904 xrsds 21450 phlipf 21693 evlslem2 22126 mamucl 22426 matbas2d 22450 mamumat1cl 22466 ordtbas2 23220 iccordt 23243 txuni2 23594 xkotf 23614 txbasval 23635 tx1stc 23679 xkococn 23689 cnmpt12 23696 cnmpt21 23700 cnmpt2t 23702 cnmpt22 23703 cnmptcom 23707 cnmpt2k 23717 txswaphmeo 23834 xpstopnlem1 23838 cnmpt2plusg 24117 cnmpt2vsca 24224 prdsdsf 24398 blfvalps 24414 blfps 24437 blf 24438 stdbdmet 24550 met2ndci 24556 dscmet 24606 xrsxmet 24850 cnmpt2ds 24884 cnmpopc 24974 iimulcn 24986 iimulcnOLD 24987 ishtpy 25023 reparphti 25048 reparphtiOLD 25049 cnmpt2ip 25301 bcthlem5 25381 rrxmet 25461 dyadf 25645 itg1addlem2 25751 mbfi1fseqlem1 25770 mbfi1fseqlem3 25772 mbfi1fseqlem4 25773 mbfi1fseqlem5 25774 cxpcn3 26809 sgmf 27206 subsf 28112 midf 28802 grpodivf 30570 nvmf 30677 ipf 30745 hvsubf 31047 ofoprabco 32682 suppovss 32697 fedgmullem1 33642 fedgmullem2 33643 fedgmul 33644 sitmf 34317 cvxsconn 35211 cvmlift2lem5 35275 uncf 37559 mblfinlem1 37617 mblfinlem2 37618 sdclem1 37703 metf1o 37715 rrnval 37787 rrnmet 37789 aks6d1c3 42080 fmpocos 42229 resubf 42357 sn-subf 42404 evlselv 42542 frmx 42870 frmy 42871 ofoafg 43316 naddcnff 43324 mnringmulrcld 44197 icof 45126 |
Copyright terms: Public domain | W3C validator |