Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 7954 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5678 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6630 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3062 {csn 4571 ∪ ciun 4937 × cxp 5606 ⟶wf 6462 ∈ cmpo 7319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-fv 6474 df-oprab 7321 df-mpo 7322 df-1st 7878 df-2nd 7879 |
This theorem is referenced by: fnmpo 7956 ovmpoelrn 7959 fmpoco 7982 eroprf 8654 omxpenlem 8917 mapxpen 8987 dffi3 9267 ixpiunwdom 9426 cantnfvalf 9501 iunfictbso 9950 axdc4lem 10291 axcclem 10293 addpqf 10780 mulpqf 10782 subf 11303 xaddf 13038 xmulf 13086 ixxf 13169 ioof 13259 fzf 13323 fzof 13464 axdc4uzlem 13783 sadcf 16239 smupf 16264 gcdf 16298 eucalgf 16365 vdwapf 16750 prdsplusg 17246 prdsmulr 17247 prdsvsca 17248 prdshom 17255 imasvscaf 17327 xpsff1o 17355 wunnat 17749 wunnatOLD 17750 catcoppccl 17909 catcoppcclOLD 17910 catcfuccl 17911 catcfucclOLD 17912 catcxpccl 18001 catcxpcclOLD 18002 evlfcl 18017 hofcl 18054 mgmplusf 18413 grpsubf 18730 subgga 18982 lactghmga 19089 sylow1lem2 19280 sylow3lem1 19308 lsmssv 19324 smndlsmidm 19337 efgmf 19394 efgtf 19403 frgpuptf 19451 lmodscaf 20228 xrsds 20724 phlipf 20940 evlslem2 21372 mamucl 21631 matbas2d 21655 mamumat1cl 21671 ordtbas2 22425 iccordt 22448 txuni2 22799 xkotf 22819 txbasval 22840 tx1stc 22884 xkococn 22894 cnmpt12 22901 cnmpt21 22905 cnmpt2t 22907 cnmpt22 22908 cnmptcom 22912 cnmpt2k 22922 txswaphmeo 23039 xpstopnlem1 23043 cnmpt2plusg 23322 cnmpt2vsca 23429 prdsdsf 23603 blfvalps 23619 blfps 23642 blf 23643 stdbdmet 23755 met2ndci 23761 dscmet 23811 xrsxmet 24055 cnmpt2ds 24089 cnmpopc 24174 iimulcn 24184 ishtpy 24218 reparphti 24243 cnmpt2ip 24495 bcthlem5 24575 rrxmet 24655 dyadf 24838 itg1addlem2 24944 mbfi1fseqlem1 24963 mbfi1fseqlem3 24965 mbfi1fseqlem4 24966 mbfi1fseqlem5 24967 cxpcn3 25984 sgmf 26377 midf 27273 grpodivf 29036 nvmf 29143 ipf 29211 hvsubf 29513 ofoprabco 31136 suppovss 31152 fedgmullem1 31850 fedgmullem2 31851 fedgmul 31852 sitmf 32459 cvxsconn 33344 cvmlift2lem5 33408 uncf 35828 mblfinlem1 35886 mblfinlem2 35887 sdclem1 35973 metf1o 35985 rrnval 36057 rrnmet 36059 resubf 40580 sn-subf 40626 frmx 40952 frmy 40953 ofoafg 41266 naddcnff 41274 mnringmulrcld 42080 icof 43000 |
Copyright terms: Public domain | W3C validator |