![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 7621 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5510 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6374 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 276 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1522 ∈ wcel 2081 ∀wral 3105 {csn 4472 ∪ ciun 4825 × cxp 5441 ⟶wf 6221 ∈ cmpo 7018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 |
This theorem is referenced by: fnmpo 7623 ovmpoelrn 7626 fmpoco 7646 eroprf 8245 omxpenlem 8465 mapxpen 8530 dffi3 8741 ixpiunwdom 8901 cantnfvalf 8974 iunfictbso 9386 axdc4lem 9723 axcclem 9725 addpqf 10212 mulpqf 10214 subf 10735 xaddf 12467 xmulf 12515 ixxf 12598 ioof 12685 fzf 12746 fzof 12885 axdc4uzlem 13201 sadcf 15635 smupf 15660 gcdf 15694 eucalgf 15756 vdwapf 16137 prdsval 16557 prdsplusg 16560 prdsmulr 16561 prdsvsca 16562 prdsds 16566 prdshom 16569 imasvscaf 16641 xpsff1o 16669 wunnat 17055 catcoppccl 17197 catcfuccl 17198 catcxpccl 17286 evlfcl 17301 hofcl 17338 plusffval 17686 mgmplusf 17690 grpsubf 17935 subgga 18171 lactghmga 18263 sylow1lem2 18454 sylow3lem1 18482 lsmssv 18498 lsmidm 18517 efgmf 18566 efgtf 18575 frgpuptf 18623 scaffval 19342 lmodscaf 19346 evlslem2 19979 xrsds 20270 ipffval 20474 phlipf 20478 mamucl 20694 matbas2d 20716 mamumat1cl 20732 ordtbas2 21483 iccordt 21506 txuni2 21857 xkotf 21877 txbasval 21898 tx1stc 21942 xkococn 21952 cnmpt12 21959 cnmpt21 21963 cnmpt2t 21965 cnmpt22 21966 cnmptcom 21970 cnmpt2k 21980 txswaphmeo 22097 xpstopnlem1 22101 cnmpt2plusg 22380 cnmpt2vsca 22486 prdsdsf 22660 blfvalps 22676 blfps 22699 blf 22700 stdbdmet 22809 met2ndci 22815 dscmet 22865 xrsxmet 23100 cnmpt2ds 23134 cnmpopc 23215 iimulcn 23225 ishtpy 23259 reparphti 23284 cnmpt2ip 23534 bcthlem5 23614 rrxmet 23694 dyadf 23875 itg1addlem2 23981 mbfi1fseqlem1 23999 mbfi1fseqlem3 24001 mbfi1fseqlem4 24002 mbfi1fseqlem5 24003 cxpcn3 25010 sgmf 25404 midf 26244 grpodivf 28006 nvmf 28113 ipf 28181 hvsubf 28483 ofoprabco 30099 suppovss 30116 fedgmullem1 30629 fedgmullem2 30630 fedgmul 30631 sitmf 31227 cvxsconn 32098 cvmlift2lem5 32162 uncf 34402 mblfinlem1 34460 mblfinlem2 34461 sdclem1 34550 metf1o 34562 rrnval 34637 rrnmet 34639 resubf 38734 frmx 38995 frmy 38996 icof 41022 |
Copyright terms: Public domain | W3C validator |