Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version |
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | fmpox 7939 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
3 | iunxpconst 5670 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
4 | 3 | feq2i 6622 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∀wral 3062 {csn 4565 ∪ ciun 4931 × cxp 5598 ⟶wf 6454 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: fnmpo 7941 ovmpoelrn 7944 fmpoco 7967 eroprf 8635 omxpenlem 8898 mapxpen 8968 dffi3 9238 ixpiunwdom 9397 cantnfvalf 9471 iunfictbso 9920 axdc4lem 10261 axcclem 10263 addpqf 10750 mulpqf 10752 subf 11273 xaddf 13008 xmulf 13056 ixxf 13139 ioof 13229 fzf 13293 fzof 13434 axdc4uzlem 13753 sadcf 16209 smupf 16234 gcdf 16268 eucalgf 16337 vdwapf 16722 prdsplusg 17218 prdsmulr 17219 prdsvsca 17220 prdshom 17227 imasvscaf 17299 xpsff1o 17327 wunnat 17721 wunnatOLD 17722 catcoppccl 17881 catcoppcclOLD 17882 catcfuccl 17883 catcfucclOLD 17884 catcxpccl 17973 catcxpcclOLD 17974 evlfcl 17989 hofcl 18026 mgmplusf 18385 grpsubf 18703 subgga 18955 lactghmga 19062 sylow1lem2 19253 sylow3lem1 19281 lsmssv 19297 smndlsmidm 19310 lsmidmOLD 19318 efgmf 19368 efgtf 19377 frgpuptf 19425 lmodscaf 20194 xrsds 20690 phlipf 20906 evlslem2 21338 mamucl 21597 matbas2d 21621 mamumat1cl 21637 ordtbas2 22391 iccordt 22414 txuni2 22765 xkotf 22785 txbasval 22806 tx1stc 22850 xkococn 22860 cnmpt12 22867 cnmpt21 22871 cnmpt2t 22873 cnmpt22 22874 cnmptcom 22878 cnmpt2k 22888 txswaphmeo 23005 xpstopnlem1 23009 cnmpt2plusg 23288 cnmpt2vsca 23395 prdsdsf 23569 blfvalps 23585 blfps 23608 blf 23609 stdbdmet 23721 met2ndci 23727 dscmet 23777 xrsxmet 24021 cnmpt2ds 24055 cnmpopc 24140 iimulcn 24150 ishtpy 24184 reparphti 24209 cnmpt2ip 24461 bcthlem5 24541 rrxmet 24621 dyadf 24804 itg1addlem2 24910 mbfi1fseqlem1 24929 mbfi1fseqlem3 24931 mbfi1fseqlem4 24932 mbfi1fseqlem5 24933 cxpcn3 25950 sgmf 26343 midf 27186 grpodivf 28949 nvmf 29056 ipf 29124 hvsubf 29426 ofoprabco 31050 suppovss 31066 fedgmullem1 31759 fedgmullem2 31760 fedgmul 31761 sitmf 32368 cvxsconn 33254 cvmlift2lem5 33318 uncf 35804 mblfinlem1 35862 mblfinlem2 35863 sdclem1 35949 metf1o 35961 rrnval 36033 rrnmet 36035 resubf 40559 sn-subf 40605 frmx 40931 frmy 40932 ofoafg 41245 naddcnff 41253 mnringmulrcld 42059 icof 42979 |
Copyright terms: Public domain | W3C validator |