| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | fmpox 8002 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
| 3 | iunxpconst 5692 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 4 | 3 | feq2i 6644 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4577 ∪ ciun 4941 × cxp 5617 ⟶wf 6478 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: fnmpo 8004 ovmpoelrn 8007 fmpoco 8028 eroprf 8742 omxpenlem 8995 mapxpen 9060 dffi3 9321 ixpiunwdom 9482 cantnfvalf 9561 iunfictbso 10008 axdc4lem 10349 axcclem 10351 addpqf 10838 mulpqf 10840 subf 11365 xaddf 13126 xmulf 13174 ixxf 13258 ioof 13350 fzf 13414 fzof 13559 axdc4uzlem 13890 sadcf 16364 smupf 16389 gcdf 16423 eucalgf 16494 vdwapf 16884 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 imasvscaf 17443 xpsff1o 17471 wunnat 17866 catcoppccl 18024 catcfuccl 18025 catcxpccl 18113 evlfcl 18128 hofcl 18165 mgmplusf 18524 grpsubf 18898 subgga 19179 lactghmga 19284 sylow1lem2 19478 sylow3lem1 19506 lsmssv 19522 smndlsmidm 19535 efgmf 19592 efgtf 19601 frgpuptf 19649 lmodscaf 20787 xrsds 21316 phlipf 21559 evlslem2 21984 mamucl 22286 matbas2d 22308 mamumat1cl 22324 ordtbas2 23076 iccordt 23099 txuni2 23450 xkotf 23470 txbasval 23491 tx1stc 23535 xkococn 23545 cnmpt12 23552 cnmpt21 23556 cnmpt2t 23558 cnmpt22 23559 cnmptcom 23563 cnmpt2k 23573 txswaphmeo 23690 xpstopnlem1 23694 cnmpt2plusg 23973 cnmpt2vsca 24080 prdsdsf 24253 blfvalps 24269 blfps 24292 blf 24293 stdbdmet 24402 met2ndci 24408 dscmet 24458 xrsxmet 24696 cnmpt2ds 24730 cnmpopc 24820 iimulcn 24832 iimulcnOLD 24833 ishtpy 24869 reparphti 24894 reparphtiOLD 24895 cnmpt2ip 25146 bcthlem5 25226 rrxmet 25306 dyadf 25490 itg1addlem2 25596 mbfi1fseqlem1 25614 mbfi1fseqlem3 25616 mbfi1fseqlem4 25617 mbfi1fseqlem5 25618 cxpcn3 26656 sgmf 27053 subsf 27973 midf 28721 grpodivf 30482 nvmf 30589 ipf 30657 hvsubf 30959 ofoprabco 32607 suppovss 32623 elrgspnlem2 33183 fedgmullem1 33596 fedgmullem2 33597 fedgmul 33598 sitmf 34320 cvxsconn 35216 cvmlift2lem5 35280 uncf 37579 mblfinlem1 37637 mblfinlem2 37638 sdclem1 37723 metf1o 37735 rrnval 37807 rrnmet 37809 aks6d1c3 42096 fmpocos 42207 resubf 42354 sn-subf 42402 evlselv 42560 frmx 42886 frmy 42887 ofoafg 43327 naddcnff 43335 mnringmulrcld 44201 icof 45197 fmpodg 48853 rescofuf 49078 |
| Copyright terms: Public domain | W3C validator |