| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | fmpox 8025 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
| 3 | iunxpconst 5704 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 4 | 3 | feq2i 6662 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4585 ∪ ciun 4951 × cxp 5629 ⟶wf 6495 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: fnmpo 8027 ovmpoelrn 8030 fmpoco 8051 eroprf 8765 omxpenlem 9019 mapxpen 9084 dffi3 9358 ixpiunwdom 9519 cantnfvalf 9594 iunfictbso 10043 axdc4lem 10384 axcclem 10386 addpqf 10873 mulpqf 10875 subf 11399 xaddf 13160 xmulf 13208 ixxf 13292 ioof 13384 fzf 13448 fzof 13593 axdc4uzlem 13924 sadcf 16399 smupf 16424 gcdf 16458 eucalgf 16529 vdwapf 16919 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 imasvscaf 17478 xpsff1o 17506 wunnat 17897 catcoppccl 18055 catcfuccl 18056 catcxpccl 18144 evlfcl 18159 hofcl 18196 mgmplusf 18553 grpsubf 18927 subgga 19208 lactghmga 19311 sylow1lem2 19505 sylow3lem1 19533 lsmssv 19549 smndlsmidm 19562 efgmf 19619 efgtf 19628 frgpuptf 19676 lmodscaf 20766 xrsds 21302 phlipf 21537 evlslem2 21962 mamucl 22264 matbas2d 22286 mamumat1cl 22302 ordtbas2 23054 iccordt 23077 txuni2 23428 xkotf 23448 txbasval 23469 tx1stc 23513 xkococn 23523 cnmpt12 23530 cnmpt21 23534 cnmpt2t 23536 cnmpt22 23537 cnmptcom 23541 cnmpt2k 23551 txswaphmeo 23668 xpstopnlem1 23672 cnmpt2plusg 23951 cnmpt2vsca 24058 prdsdsf 24231 blfvalps 24247 blfps 24270 blf 24271 stdbdmet 24380 met2ndci 24386 dscmet 24436 xrsxmet 24674 cnmpt2ds 24708 cnmpopc 24798 iimulcn 24810 iimulcnOLD 24811 ishtpy 24847 reparphti 24872 reparphtiOLD 24873 cnmpt2ip 25124 bcthlem5 25204 rrxmet 25284 dyadf 25468 itg1addlem2 25574 mbfi1fseqlem1 25592 mbfi1fseqlem3 25594 mbfi1fseqlem4 25595 mbfi1fseqlem5 25596 cxpcn3 26634 sgmf 27031 subsf 27944 midf 28679 grpodivf 30440 nvmf 30547 ipf 30615 hvsubf 30917 ofoprabco 32561 suppovss 32577 elrgspnlem2 33167 fedgmullem1 33598 fedgmullem2 33599 fedgmul 33600 sitmf 34316 cvxsconn 35203 cvmlift2lem5 35267 uncf 37566 mblfinlem1 37624 mblfinlem2 37625 sdclem1 37710 metf1o 37722 rrnval 37794 rrnmet 37796 aks6d1c3 42084 fmpocos 42195 resubf 42342 sn-subf 42390 evlselv 42548 frmx 42875 frmy 42876 ofoafg 43316 naddcnff 43324 mnringmulrcld 44190 icof 45186 fmpodg 48830 rescofuf 49055 |
| Copyright terms: Public domain | W3C validator |