| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | fmpox 7999 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
| 3 | iunxpconst 5687 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 4 | 3 | feq2i 6643 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4573 ∪ ciun 4939 × cxp 5612 ⟶wf 6477 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: fnmpo 8001 ovmpoelrn 8004 fmpoco 8025 eroprf 8739 omxpenlem 8991 mapxpen 9056 dffi3 9315 ixpiunwdom 9476 cantnfvalf 9555 iunfictbso 10005 axdc4lem 10346 axcclem 10348 addpqf 10835 mulpqf 10837 subf 11362 xaddf 13123 xmulf 13171 ixxf 13255 ioof 13347 fzf 13411 fzof 13556 axdc4uzlem 13890 sadcf 16364 smupf 16389 gcdf 16423 eucalgf 16494 vdwapf 16884 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 imasvscaf 17443 xpsff1o 17471 wunnat 17866 catcoppccl 18024 catcfuccl 18025 catcxpccl 18113 evlfcl 18128 hofcl 18165 mgmplusf 18558 grpsubf 18932 subgga 19212 lactghmga 19317 sylow1lem2 19511 sylow3lem1 19539 lsmssv 19555 smndlsmidm 19568 efgmf 19625 efgtf 19634 frgpuptf 19682 lmodscaf 20817 xrsds 21346 phlipf 21589 evlslem2 22014 mamucl 22316 matbas2d 22338 mamumat1cl 22354 ordtbas2 23106 iccordt 23129 txuni2 23480 xkotf 23500 txbasval 23521 tx1stc 23565 xkococn 23575 cnmpt12 23582 cnmpt21 23586 cnmpt2t 23588 cnmpt22 23589 cnmptcom 23593 cnmpt2k 23603 txswaphmeo 23720 xpstopnlem1 23724 cnmpt2plusg 24003 cnmpt2vsca 24110 prdsdsf 24282 blfvalps 24298 blfps 24321 blf 24322 stdbdmet 24431 met2ndci 24437 dscmet 24487 xrsxmet 24725 cnmpt2ds 24759 cnmpopc 24849 iimulcn 24861 iimulcnOLD 24862 ishtpy 24898 reparphti 24923 reparphtiOLD 24924 cnmpt2ip 25175 bcthlem5 25255 rrxmet 25335 dyadf 25519 itg1addlem2 25625 mbfi1fseqlem1 25643 mbfi1fseqlem3 25645 mbfi1fseqlem4 25646 mbfi1fseqlem5 25647 cxpcn3 26685 sgmf 27082 subsf 28004 midf 28754 grpodivf 30518 nvmf 30625 ipf 30693 hvsubf 30995 ofoprabco 32646 suppovss 32662 elrgspnlem2 33210 fedgmullem1 33642 fedgmullem2 33643 fedgmul 33644 sitmf 34365 cvxsconn 35287 cvmlift2lem5 35351 uncf 37647 mblfinlem1 37705 mblfinlem2 37706 sdclem1 37791 metf1o 37803 rrnval 37875 rrnmet 37877 aks6d1c3 42164 fmpocos 42275 resubf 42422 sn-subf 42470 evlselv 42628 frmx 42954 frmy 42955 ofoafg 43395 naddcnff 43403 mnringmulrcld 44269 icof 45264 fmpodg 48908 rescofuf 49133 |
| Copyright terms: Public domain | W3C validator |