| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpo | Structured version Visualization version GIF version | ||
| Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmpo | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | fmpox 8071 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) |
| 3 | iunxpconst 5732 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
| 4 | 3 | feq2i 6703 | . 2 ⊢ (𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {csn 4606 ∪ ciun 4972 × cxp 5657 ⟶wf 6532 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: fnmpo 8073 ovmpoelrn 8076 fmpoco 8099 eroprf 8834 omxpenlem 9092 mapxpen 9162 dffi3 9448 ixpiunwdom 9609 cantnfvalf 9684 iunfictbso 10133 axdc4lem 10474 axcclem 10476 addpqf 10963 mulpqf 10965 subf 11489 xaddf 13245 xmulf 13293 ixxf 13377 ioof 13469 fzf 13533 fzof 13678 axdc4uzlem 14006 sadcf 16477 smupf 16502 gcdf 16536 eucalgf 16607 vdwapf 16997 prdsplusg 17477 prdsmulr 17478 prdsvsca 17479 prdshom 17486 imasvscaf 17558 xpsff1o 17586 wunnat 17977 catcoppccl 18135 catcfuccl 18136 catcxpccl 18224 evlfcl 18239 hofcl 18276 mgmplusf 18633 grpsubf 19007 subgga 19288 lactghmga 19391 sylow1lem2 19585 sylow3lem1 19613 lsmssv 19629 smndlsmidm 19642 efgmf 19699 efgtf 19708 frgpuptf 19756 lmodscaf 20846 xrsds 21382 phlipf 21617 evlslem2 22042 mamucl 22344 matbas2d 22366 mamumat1cl 22382 ordtbas2 23134 iccordt 23157 txuni2 23508 xkotf 23528 txbasval 23549 tx1stc 23593 xkococn 23603 cnmpt12 23610 cnmpt21 23614 cnmpt2t 23616 cnmpt22 23617 cnmptcom 23621 cnmpt2k 23631 txswaphmeo 23748 xpstopnlem1 23752 cnmpt2plusg 24031 cnmpt2vsca 24138 prdsdsf 24311 blfvalps 24327 blfps 24350 blf 24351 stdbdmet 24460 met2ndci 24466 dscmet 24516 xrsxmet 24754 cnmpt2ds 24788 cnmpopc 24878 iimulcn 24890 iimulcnOLD 24891 ishtpy 24927 reparphti 24952 reparphtiOLD 24953 cnmpt2ip 25205 bcthlem5 25285 rrxmet 25365 dyadf 25549 itg1addlem2 25655 mbfi1fseqlem1 25673 mbfi1fseqlem3 25675 mbfi1fseqlem4 25676 mbfi1fseqlem5 25677 cxpcn3 26715 sgmf 27112 subsf 28025 midf 28760 grpodivf 30524 nvmf 30631 ipf 30699 hvsubf 31001 ofoprabco 32647 suppovss 32663 elrgspnlem2 33243 fedgmullem1 33674 fedgmullem2 33675 fedgmul 33676 sitmf 34389 cvxsconn 35270 cvmlift2lem5 35334 uncf 37628 mblfinlem1 37686 mblfinlem2 37687 sdclem1 37772 metf1o 37784 rrnval 37856 rrnmet 37858 aks6d1c3 42141 fmpocos 42252 resubf 42391 sn-subf 42438 evlselv 42577 frmx 42904 frmy 42905 ofoafg 43345 naddcnff 43353 mnringmulrcld 44219 icof 45210 fmpodg 48811 rescofuf 49023 |
| Copyright terms: Public domain | W3C validator |