Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Structured version   Visualization version   GIF version

Theorem indval2 33012
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))

Proof of Theorem indval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 6685 . . . 4 (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)})
2 indval 33011 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 undif 4482 . . . . . . 7 (𝐴𝑂 ↔ (𝐴 ∪ (𝑂𝐴)) = 𝑂)
43biimpi 215 . . . . . 6 (𝐴𝑂 → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
54adantl 483 . . . . 5 ((𝑂𝑉𝐴𝑂) → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
65iuneq1d 5025 . . . 4 ((𝑂𝑉𝐴𝑂) → 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)}))
71, 2, 63eqtr4a 2799 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}))
8 iunxun 5098 . . 3 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}))
97, 8eqtrdi 2789 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})))
10 iftrue 4535 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 1, 0) = 1)
1110sneqd 4641 . . . . . 6 (𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {1})
1211xpeq2d 5707 . . . . 5 (𝑥𝐴 → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {1}))
1312iuneq2i 5019 . . . 4 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝐴 ({𝑥} × {1})
14 iunxpconst 5749 . . . 4 𝑥𝐴 ({𝑥} × {1}) = (𝐴 × {1})
1513, 14eqtri 2761 . . 3 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = (𝐴 × {1})
16 eldifn 4128 . . . . . . 7 (𝑥 ∈ (𝑂𝐴) → ¬ 𝑥𝐴)
17 iffalse 4538 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 1, 0) = 0)
1817sneqd 4641 . . . . . . 7 𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {0})
1916, 18syl 17 . . . . . 6 (𝑥 ∈ (𝑂𝐴) → {if(𝑥𝐴, 1, 0)} = {0})
2019xpeq2d 5707 . . . . 5 (𝑥 ∈ (𝑂𝐴) → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {0}))
2120iuneq2i 5019 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥 ∈ (𝑂𝐴)({𝑥} × {0})
22 iunxpconst 5749 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {0}) = ((𝑂𝐴) × {0})
2321, 22eqtri 2761 . . 3 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = ((𝑂𝐴) × {0})
2415, 23uneq12i 4162 . 2 ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0}))
259, 24eqtrdi 2789 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  cdif 3946  cun 3947  wss 3949  ifcif 4529  {csn 4629   ciun 4998  cmpt 5232   × cxp 5675  cfv 6544  0cc0 11110  1c1 11111  𝟭cind 33008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ind 33009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator