Step | Hyp | Ref
| Expression |
1 | | dfmpt3 6551 |
. . . 4
⊢ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) = ∪ 𝑥 ∈ 𝑂 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) |
2 | | indval 31881 |
. . . 4
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
3 | | undif 4412 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑂 ↔ (𝐴 ∪ (𝑂 ∖ 𝐴)) = 𝑂) |
4 | 3 | biimpi 215 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∪ (𝑂 ∖ 𝐴)) = 𝑂) |
5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝐴 ∪ (𝑂 ∖ 𝐴)) = 𝑂) |
6 | 5 | iuneq1d 4948 |
. . . 4
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ∪
𝑥 ∈ (𝐴 ∪ (𝑂 ∖ 𝐴))({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ∪ 𝑥 ∈ 𝑂 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)})) |
7 | 1, 2, 6 | 3eqtr4a 2805 |
. . 3
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = ∪
𝑥 ∈ (𝐴 ∪ (𝑂 ∖ 𝐴))({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)})) |
8 | | iunxun 5019 |
. . 3
⊢ ∪ 𝑥 ∈ (𝐴 ∪ (𝑂 ∖ 𝐴))({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = (∪ 𝑥 ∈ 𝐴 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) ∪ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)})) |
9 | 7, 8 | eqtrdi 2795 |
. 2
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (∪
𝑥 ∈ 𝐴 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) ∪ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}))) |
10 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 1, 0) = 1) |
11 | 10 | sneqd 4570 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → {if(𝑥 ∈ 𝐴, 1, 0)} = {1}) |
12 | 11 | xpeq2d 5610 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ({𝑥} × {1})) |
13 | 12 | iuneq2i 4942 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {1}) |
14 | | iunxpconst 5650 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {1}) = (𝐴 × {1}) |
15 | 13, 14 | eqtri 2766 |
. . 3
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = (𝐴 × {1}) |
16 | | eldifn 4058 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑂 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
17 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 1, 0) = 0) |
18 | 17 | sneqd 4570 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐴 → {if(𝑥 ∈ 𝐴, 1, 0)} = {0}) |
19 | 16, 18 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ (𝑂 ∖ 𝐴) → {if(𝑥 ∈ 𝐴, 1, 0)} = {0}) |
20 | 19 | xpeq2d 5610 |
. . . . 5
⊢ (𝑥 ∈ (𝑂 ∖ 𝐴) → ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ({𝑥} × {0})) |
21 | 20 | iuneq2i 4942 |
. . . 4
⊢ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {0}) |
22 | | iunxpconst 5650 |
. . . 4
⊢ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {0}) = ((𝑂 ∖ 𝐴) × {0}) |
23 | 21, 22 | eqtri 2766 |
. . 3
⊢ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) = ((𝑂 ∖ 𝐴) × {0}) |
24 | 15, 23 | uneq12i 4091 |
. 2
⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)}) ∪ ∪ 𝑥 ∈ (𝑂 ∖ 𝐴)({𝑥} × {if(𝑥 ∈ 𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) |
25 | 9, 24 | eqtrdi 2795 |
1
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0}))) |