Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Structured version   Visualization version   GIF version

Theorem indval2 31882
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))

Proof of Theorem indval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 6551 . . . 4 (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)})
2 indval 31881 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 undif 4412 . . . . . . 7 (𝐴𝑂 ↔ (𝐴 ∪ (𝑂𝐴)) = 𝑂)
43biimpi 215 . . . . . 6 (𝐴𝑂 → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐴𝑂) → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
65iuneq1d 4948 . . . 4 ((𝑂𝑉𝐴𝑂) → 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)}))
71, 2, 63eqtr4a 2805 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}))
8 iunxun 5019 . . 3 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}))
97, 8eqtrdi 2795 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})))
10 iftrue 4462 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 1, 0) = 1)
1110sneqd 4570 . . . . . 6 (𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {1})
1211xpeq2d 5610 . . . . 5 (𝑥𝐴 → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {1}))
1312iuneq2i 4942 . . . 4 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝐴 ({𝑥} × {1})
14 iunxpconst 5650 . . . 4 𝑥𝐴 ({𝑥} × {1}) = (𝐴 × {1})
1513, 14eqtri 2766 . . 3 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = (𝐴 × {1})
16 eldifn 4058 . . . . . . 7 (𝑥 ∈ (𝑂𝐴) → ¬ 𝑥𝐴)
17 iffalse 4465 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 1, 0) = 0)
1817sneqd 4570 . . . . . . 7 𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {0})
1916, 18syl 17 . . . . . 6 (𝑥 ∈ (𝑂𝐴) → {if(𝑥𝐴, 1, 0)} = {0})
2019xpeq2d 5610 . . . . 5 (𝑥 ∈ (𝑂𝐴) → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {0}))
2120iuneq2i 4942 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥 ∈ (𝑂𝐴)({𝑥} × {0})
22 iunxpconst 5650 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {0}) = ((𝑂𝐴) × {0})
2321, 22eqtri 2766 . . 3 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = ((𝑂𝐴) × {0})
2415, 23uneq12i 4091 . 2 ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0}))
259, 24eqtrdi 2795 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  cun 3881  wss 3883  ifcif 4456  {csn 4558   ciun 4921  cmpt 5153   × cxp 5578  cfv 6418  0cc0 10802  1c1 10803  𝟭cind 31878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ind 31879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator