Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Structured version   Visualization version   GIF version

Theorem indval2 33995
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))

Proof of Theorem indval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 6703 . . . 4 (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)})
2 indval 33994 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 undif 4488 . . . . . . 7 (𝐴𝑂 ↔ (𝐴 ∪ (𝑂𝐴)) = 𝑂)
43biimpi 216 . . . . . 6 (𝐴𝑂 → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐴𝑂) → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
65iuneq1d 5024 . . . 4 ((𝑂𝑉𝐴𝑂) → 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)}))
71, 2, 63eqtr4a 2801 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}))
8 iunxun 5099 . . 3 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}))
97, 8eqtrdi 2791 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})))
10 iftrue 4537 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 1, 0) = 1)
1110sneqd 4643 . . . . . 6 (𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {1})
1211xpeq2d 5719 . . . . 5 (𝑥𝐴 → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {1}))
1312iuneq2i 5018 . . . 4 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝐴 ({𝑥} × {1})
14 iunxpconst 5761 . . . 4 𝑥𝐴 ({𝑥} × {1}) = (𝐴 × {1})
1513, 14eqtri 2763 . . 3 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = (𝐴 × {1})
16 eldifn 4142 . . . . . . 7 (𝑥 ∈ (𝑂𝐴) → ¬ 𝑥𝐴)
17 iffalse 4540 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 1, 0) = 0)
1817sneqd 4643 . . . . . . 7 𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {0})
1916, 18syl 17 . . . . . 6 (𝑥 ∈ (𝑂𝐴) → {if(𝑥𝐴, 1, 0)} = {0})
2019xpeq2d 5719 . . . . 5 (𝑥 ∈ (𝑂𝐴) → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {0}))
2120iuneq2i 5018 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥 ∈ (𝑂𝐴)({𝑥} × {0})
22 iunxpconst 5761 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {0}) = ((𝑂𝐴) × {0})
2321, 22eqtri 2763 . . 3 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = ((𝑂𝐴) × {0})
2415, 23uneq12i 4176 . 2 ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0}))
259, 24eqtrdi 2791 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  cun 3961  wss 3963  ifcif 4531  {csn 4631   ciun 4996  cmpt 5231   × cxp 5687  cfv 6563  0cc0 11153  1c1 11154  𝟭cind 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ind 33992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator