Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Structured version   Visualization version   GIF version

Theorem indval2 32810
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))

Proof of Theorem indval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 6620 . . . 4 (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)})
2 indval 32809 . . . 4 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 undif 4435 . . . . . . 7 (𝐴𝑂 ↔ (𝐴 ∪ (𝑂𝐴)) = 𝑂)
43biimpi 216 . . . . . 6 (𝐴𝑂 → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐴𝑂) → (𝐴 ∪ (𝑂𝐴)) = 𝑂)
65iuneq1d 4972 . . . 4 ((𝑂𝑉𝐴𝑂) → 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝑂 ({𝑥} × {if(𝑥𝐴, 1, 0)}))
71, 2, 63eqtr4a 2790 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}))
8 iunxun 5046 . . 3 𝑥 ∈ (𝐴 ∪ (𝑂𝐴))({𝑥} × {if(𝑥𝐴, 1, 0)}) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}))
97, 8eqtrdi 2780 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})))
10 iftrue 4484 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 1, 0) = 1)
1110sneqd 4591 . . . . . 6 (𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {1})
1211xpeq2d 5653 . . . . 5 (𝑥𝐴 → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {1}))
1312iuneq2i 4966 . . . 4 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥𝐴 ({𝑥} × {1})
14 iunxpconst 5696 . . . 4 𝑥𝐴 ({𝑥} × {1}) = (𝐴 × {1})
1513, 14eqtri 2752 . . 3 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) = (𝐴 × {1})
16 eldifn 4085 . . . . . . 7 (𝑥 ∈ (𝑂𝐴) → ¬ 𝑥𝐴)
17 iffalse 4487 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 1, 0) = 0)
1817sneqd 4591 . . . . . . 7 𝑥𝐴 → {if(𝑥𝐴, 1, 0)} = {0})
1916, 18syl 17 . . . . . 6 (𝑥 ∈ (𝑂𝐴) → {if(𝑥𝐴, 1, 0)} = {0})
2019xpeq2d 5653 . . . . 5 (𝑥 ∈ (𝑂𝐴) → ({𝑥} × {if(𝑥𝐴, 1, 0)}) = ({𝑥} × {0}))
2120iuneq2i 4966 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = 𝑥 ∈ (𝑂𝐴)({𝑥} × {0})
22 iunxpconst 5696 . . . 4 𝑥 ∈ (𝑂𝐴)({𝑥} × {0}) = ((𝑂𝐴) × {0})
2321, 22eqtri 2752 . . 3 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)}) = ((𝑂𝐴) × {0})
2415, 23uneq12i 4119 . 2 ( 𝑥𝐴 ({𝑥} × {if(𝑥𝐴, 1, 0)}) ∪ 𝑥 ∈ (𝑂𝐴)({𝑥} × {if(𝑥𝐴, 1, 0)})) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0}))
259, 24eqtrdi 2780 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3902  cun 3903  wss 3905  ifcif 4478  {csn 4579   ciun 4944  cmpt 5176   × cxp 5621  cfv 6486  0cc0 11028  1c1 11029  𝟭cind 32806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ind 32807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator