Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdvalc | Structured version Visualization version GIF version |
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
mapdvalc.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
Ref | Expression |
---|---|
mapdvalc | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
4 | mapdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
5 | mapdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
6 | mapdval.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
7 | mapdval.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | mapdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
9 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mapdval 39642 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
11 | anass 469 | . . . 4 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) | |
12 | mapdvalc.c | . . . . . . . 8 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
13 | 12 | lcfl1lem 39505 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
14 | 13 | anbi1i 624 | . . . . . 6 ⊢ ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
15 | 14 | bicomi 223 | . . . . 5 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
17 | 11, 16 | bitr3id 285 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
18 | 17 | rabbidva2 3411 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
19 | 10, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ‘cfv 6433 LSubSpclss 20193 LFnlclfn 37071 LKerclk 37099 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 mapdcmpd 39638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-mapd 39639 |
This theorem is referenced by: mapdval2N 39644 mapdordlem2 39651 mapdrval 39661 |
Copyright terms: Public domain | W3C validator |