![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdvalc | Structured version Visualization version GIF version |
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
mapdvalc.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
Ref | Expression |
---|---|
mapdvalc | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
4 | mapdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
5 | mapdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
6 | mapdval.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
7 | mapdval.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | mapdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
9 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mapdval 41534 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
11 | anass 468 | . . . 4 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) | |
12 | mapdvalc.c | . . . . . . . 8 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
13 | 12 | lcfl1lem 41397 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
14 | 13 | anbi1i 623 | . . . . . 6 ⊢ ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
15 | 14 | bicomi 224 | . . . . 5 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
17 | 11, 16 | bitr3id 285 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
18 | 17 | rabbidva2 3440 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
19 | 10, 18 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 {crab 3438 ⊆ wss 3970 ‘cfv 6572 LSubSpclss 20947 LFnlclfn 38962 LKerclk 38990 LHypclh 39890 DVecHcdvh 40984 ocHcoch 41253 mapdcmpd 41530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-mapd 41531 |
This theorem is referenced by: mapdval2N 41536 mapdordlem2 41543 mapdrval 41553 |
Copyright terms: Public domain | W3C validator |