| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdvalc | Structured version Visualization version GIF version | ||
| Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
| mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| mapdvalc.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| Ref | Expression |
|---|---|
| mapdvalc | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 4 | mapdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 5 | mapdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 6 | mapdval.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 7 | mapdval.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 8 | mapdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 9 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mapdval 41666 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 11 | anass 468 | . . . 4 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) | |
| 12 | mapdvalc.c | . . . . . . . 8 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
| 13 | 12 | lcfl1lem 41529 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
| 14 | 13 | anbi1i 624 | . . . . . 6 ⊢ ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 15 | 14 | bicomi 224 | . . . . 5 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 17 | 11, 16 | bitr3id 285 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 18 | 17 | rabbidva2 3397 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| 19 | 10, 18 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ‘cfv 6481 LSubSpclss 20862 LFnlclfn 39095 LKerclk 39123 LHypclh 40022 DVecHcdvh 41116 ocHcoch 41385 mapdcmpd 41662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-mapd 41663 |
| This theorem is referenced by: mapdval2N 41668 mapdordlem2 41675 mapdrval 41685 |
| Copyright terms: Public domain | W3C validator |