| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdvalc | Structured version Visualization version GIF version | ||
| Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
| mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| mapdvalc.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| Ref | Expression |
|---|---|
| mapdvalc | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 4 | mapdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 5 | mapdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 6 | mapdval.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 7 | mapdval.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 8 | mapdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 9 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mapdval 41564 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 11 | anass 468 | . . . 4 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) | |
| 12 | mapdvalc.c | . . . . . . . 8 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
| 13 | 12 | lcfl1lem 41427 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
| 14 | 13 | anbi1i 624 | . . . . . 6 ⊢ ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 15 | 14 | bicomi 224 | . . . . 5 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 17 | 11, 16 | bitr3id 285 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 18 | 17 | rabbidva2 3421 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| 19 | 10, 18 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ‘cfv 6540 LSubSpclss 20896 LFnlclfn 38992 LKerclk 39020 LHypclh 39920 DVecHcdvh 41014 ocHcoch 41283 mapdcmpd 41560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-mapd 41561 |
| This theorem is referenced by: mapdval2N 41566 mapdordlem2 41573 mapdrval 41583 |
| Copyright terms: Public domain | W3C validator |