| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdvalc | Structured version Visualization version GIF version | ||
| Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| mapdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdval.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
| mapdval.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| mapdvalc.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| Ref | Expression |
|---|---|
| mapdvalc | ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 4 | mapdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 5 | mapdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 6 | mapdval.o | . . 3 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 7 | mapdval.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 8 | mapdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 9 | mapdval.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mapdval 41622 | . 2 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)}) |
| 11 | anass 468 | . . . 4 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) | |
| 12 | mapdvalc.c | . . . . . . . 8 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
| 13 | 12 | lcfl1lem 41485 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
| 14 | 13 | anbi1i 624 | . . . . . 6 ⊢ ((𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 15 | 14 | bicomi 224 | . . . . 5 ⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 17 | 11, 16 | bitr3id 285 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) ↔ (𝑓 ∈ 𝐶 ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇))) |
| 18 | 17 | rabbidva2 3407 | . 2 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)} = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| 19 | 10, 18 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ‘cfv 6511 LSubSpclss 20837 LFnlclfn 39050 LKerclk 39078 LHypclh 39978 DVecHcdvh 41072 ocHcoch 41341 mapdcmpd 41618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-mapd 41619 |
| This theorem is referenced by: mapdval2N 41624 mapdordlem2 41631 mapdrval 41641 |
| Copyright terms: Public domain | W3C validator |