Step | Hyp | Ref
| Expression |
1 | | lclkrlem1.f |
. . 3
β’ πΉ = (LFnlβπ) |
2 | | lclkrlem1.r |
. . 3
β’ π
= (Scalarβπ) |
3 | | lclkrlem1.b |
. . 3
β’ π΅ = (Baseβπ
) |
4 | | lclkrlem1.d |
. . 3
β’ π· = (LDualβπ) |
5 | | lclkrlem1.t |
. . 3
β’ Β· = (
Β·π βπ·) |
6 | | lclkrlem1.h |
. . . 4
β’ π» = (LHypβπΎ) |
7 | | lclkrlem1.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
8 | | lclkrlem1.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
9 | 6, 7, 8 | dvhlmod 39969 |
. . 3
β’ (π β π β LMod) |
10 | | lclkrlem1.x |
. . 3
β’ (π β π β π΅) |
11 | | lclkrlem1.g |
. . . . 5
β’ (π β πΊ β πΆ) |
12 | | lclkrlem1.c |
. . . . . 6
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
13 | 12 | lcfl1lem 40350 |
. . . . 5
β’ (πΊ β πΆ β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
14 | 11, 13 | sylib 217 |
. . . 4
β’ (π β (πΊ β πΉ β§ ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
15 | 14 | simpld 495 |
. . 3
β’ (π β πΊ β πΉ) |
16 | 1, 2, 3, 4, 5, 9, 10, 15 | ldualvscl 37997 |
. 2
β’ (π β (π Β· πΊ) β πΉ) |
17 | | lclkrlem1.o |
. . . . . 6
β’ β₯ =
((ocHβπΎ)βπ) |
18 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
19 | 6, 7, 17, 18, 8 | dochoc1 40220 |
. . . . 5
β’ (π β ( β₯ β( β₯
β(Baseβπ))) =
(Baseβπ)) |
20 | 19 | adantr 481 |
. . . 4
β’ ((π β§ π = (0gβπ
)) β ( β₯ β( β₯
β(Baseβπ))) =
(Baseβπ)) |
21 | | fvoveq1 7428 |
. . . . . . 7
β’ (π = (0gβπ
) β (πΏβ(π Β· πΊ)) = (πΏβ((0gβπ
) Β· πΊ))) |
22 | 4, 9 | lduallmod 38011 |
. . . . . . . . . . 11
β’ (π β π· β LMod) |
23 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ·) =
(Baseβπ·) |
24 | 1, 4, 23, 9, 15 | ldualelvbase 37985 |
. . . . . . . . . . 11
β’ (π β πΊ β (Baseβπ·)) |
25 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Scalarβπ·) =
(Scalarβπ·) |
26 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβ(Scalarβπ·)) =
(0gβ(Scalarβπ·)) |
27 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ·) = (0gβπ·) |
28 | 23, 25, 5, 26, 27 | lmod0vs 20497 |
. . . . . . . . . . 11
β’ ((π· β LMod β§ πΊ β (Baseβπ·)) β
((0gβ(Scalarβπ·)) Β· πΊ) = (0gβπ·)) |
29 | 22, 24, 28 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β
((0gβ(Scalarβπ·)) Β· πΊ) = (0gβπ·)) |
30 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ
) = (0gβπ
) |
31 | 2, 30, 4, 25, 26, 9 | ldual0 38005 |
. . . . . . . . . . 11
β’ (π β
(0gβ(Scalarβπ·)) = (0gβπ
)) |
32 | 31 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π β
((0gβ(Scalarβπ·)) Β· πΊ) = ((0gβπ
) Β· πΊ)) |
33 | 18, 2, 30, 4, 27, 9 | ldual0v 38008 |
. . . . . . . . . 10
β’ (π β (0gβπ·) = ((Baseβπ) Γ
{(0gβπ
)})) |
34 | 29, 32, 33 | 3eqtr3d 2780 |
. . . . . . . . 9
β’ (π β
((0gβπ
)
Β·
πΊ) = ((Baseβπ) Γ
{(0gβπ
)})) |
35 | 34 | fveq2d 6892 |
. . . . . . . 8
β’ (π β (πΏβ((0gβπ
) Β· πΊ)) = (πΏβ((Baseβπ) Γ {(0gβπ
)}))) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
((Baseβπ)
Γ {(0gβπ
)}) = ((Baseβπ) Γ {(0gβπ
)}) |
37 | 2, 30, 18, 1 | lfl0f 37927 |
. . . . . . . . . 10
β’ (π β LMod β
((Baseβπ) Γ
{(0gβπ
)})
β πΉ) |
38 | | lclkrlem1.l |
. . . . . . . . . . 11
β’ πΏ = (LKerβπ) |
39 | 2, 30, 18, 1, 38 | lkr0f 37952 |
. . . . . . . . . 10
β’ ((π β LMod β§
((Baseβπ) Γ
{(0gβπ
)})
β πΉ) β ((πΏβ((Baseβπ) Γ
{(0gβπ
)}))
= (Baseβπ) β
((Baseβπ) Γ
{(0gβπ
)})
= ((Baseβπ) Γ
{(0gβπ
)}))) |
40 | 9, 37, 39 | syl2anc2 585 |
. . . . . . . . 9
β’ (π β ((πΏβ((Baseβπ) Γ {(0gβπ
)})) = (Baseβπ) β ((Baseβπ) Γ
{(0gβπ
)})
= ((Baseβπ) Γ
{(0gβπ
)}))) |
41 | 36, 40 | mpbiri 257 |
. . . . . . . 8
β’ (π β (πΏβ((Baseβπ) Γ {(0gβπ
)})) = (Baseβπ)) |
42 | 35, 41 | eqtrd 2772 |
. . . . . . 7
β’ (π β (πΏβ((0gβπ
) Β· πΊ)) = (Baseβπ)) |
43 | 21, 42 | sylan9eqr 2794 |
. . . . . 6
β’ ((π β§ π = (0gβπ
)) β (πΏβ(π Β· πΊ)) = (Baseβπ)) |
44 | 43 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π = (0gβπ
)) β ( β₯ β(πΏβ(π Β· πΊ))) = ( β₯
β(Baseβπ))) |
45 | 44 | fveq2d 6892 |
. . . 4
β’ ((π β§ π = (0gβπ
)) β ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = ( β₯ β( β₯
β(Baseβπ)))) |
46 | 20, 45, 43 | 3eqtr4d 2782 |
. . 3
β’ ((π β§ π = (0gβπ
)) β ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = (πΏβ(π Β· πΊ))) |
47 | 14 | simprd 496 |
. . . . 5
β’ (π β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
48 | 47 | adantr 481 |
. . . 4
β’ ((π β§ π β (0gβπ
)) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
49 | 6, 7, 8 | dvhlvec 39968 |
. . . . . . . 8
β’ (π β π β LVec) |
50 | 49 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0gβπ
)) β π β LVec) |
51 | 15 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0gβπ
)) β πΊ β πΉ) |
52 | 10 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0gβπ
)) β π β π΅) |
53 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β (0gβπ
)) β π β (0gβπ
)) |
54 | 2, 3, 30, 1, 38, 4, 5, 50, 51, 52, 53 | ldualkrsc 38025 |
. . . . . 6
β’ ((π β§ π β (0gβπ
)) β (πΏβ(π Β· πΊ)) = (πΏβπΊ)) |
55 | 54 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π β (0gβπ
)) β ( β₯ β(πΏβ(π Β· πΊ))) = ( β₯ β(πΏβπΊ))) |
56 | 55 | fveq2d 6892 |
. . . 4
β’ ((π β§ π β (0gβπ
)) β ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = ( β₯ β( β₯
β(πΏβπΊ)))) |
57 | 48, 56, 54 | 3eqtr4d 2782 |
. . 3
β’ ((π β§ π β (0gβπ
)) β ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = (πΏβ(π Β· πΊ))) |
58 | 46, 57 | pm2.61dane 3029 |
. 2
β’ (π β ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = (πΏβ(π Β· πΊ))) |
59 | 12 | lcfl1lem 40350 |
. 2
β’ ((π Β· πΊ) β πΆ β ((π Β· πΊ) β πΉ β§ ( β₯ β( β₯
β(πΏβ(π Β· πΊ)))) = (πΏβ(π Β· πΊ)))) |
60 | 16, 58, 59 | sylanbrc 583 |
1
β’ (π β (π Β· πΊ) β πΆ) |