| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem1 | Structured version Visualization version GIF version | ||
| Description: The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| lclkrlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem1.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| lclkrlem1.b | ⊢ 𝐵 = (Base‘𝑅) |
| lclkrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lclkrlem1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lclkrlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lclkrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| lclkrlem1 | ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrlem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 2 | lclkrlem1.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 3 | lclkrlem1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | lclkrlem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 5 | lclkrlem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 6 | lclkrlem1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | lclkrlem1.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | lclkrlem1.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 6, 7, 8 | dvhlmod 41099 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | lclkrlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | lclkrlem1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
| 12 | lclkrlem1.c | . . . . . 6 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 13 | 12 | lcfl1lem 41480 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 14 | 11, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 16 | 1, 2, 3, 4, 5, 9, 10, 15 | ldualvscl 39127 | . 2 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
| 17 | lclkrlem1.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 18 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 19 | 6, 7, 17, 18, 8 | dochoc1 41350 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
| 21 | fvoveq1 7412 | . . . . . . 7 ⊢ (𝑋 = (0g‘𝑅) → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘((0g‘𝑅) · 𝐺))) | |
| 22 | 4, 9 | lduallmod 39141 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 23 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 24 | 1, 4, 23, 9, 15 | ldualelvbase 39115 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 25 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 26 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷)) | |
| 27 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 28 | 23, 25, 5, 26, 27 | lmod0vs 20807 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → ((0g‘(Scalar‘𝐷)) · 𝐺) = (0g‘𝐷)) |
| 29 | 22, 24, 28 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → ((0g‘(Scalar‘𝐷)) · 𝐺) = (0g‘𝐷)) |
| 30 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 31 | 2, 30, 4, 25, 26, 9 | ldual0 39135 | . . . . . . . . . . 11 ⊢ (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘𝑅)) |
| 32 | 31 | oveq1d 7404 | . . . . . . . . . 10 ⊢ (𝜑 → ((0g‘(Scalar‘𝐷)) · 𝐺) = ((0g‘𝑅) · 𝐺)) |
| 33 | 18, 2, 30, 4, 27, 9 | ldual0v 39138 | . . . . . . . . . 10 ⊢ (𝜑 → (0g‘𝐷) = ((Base‘𝑈) × {(0g‘𝑅)})) |
| 34 | 29, 32, 33 | 3eqtr3d 2773 | . . . . . . . . 9 ⊢ (𝜑 → ((0g‘𝑅) · 𝐺) = ((Base‘𝑈) × {(0g‘𝑅)})) |
| 35 | 34 | fveq2d 6864 | . . . . . . . 8 ⊢ (𝜑 → (𝐿‘((0g‘𝑅) · 𝐺)) = (𝐿‘((Base‘𝑈) × {(0g‘𝑅)}))) |
| 36 | eqid 2730 | . . . . . . . . 9 ⊢ ((Base‘𝑈) × {(0g‘𝑅)}) = ((Base‘𝑈) × {(0g‘𝑅)}) | |
| 37 | 2, 30, 18, 1 | lfl0f 39057 | . . . . . . . . . 10 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘𝑅)}) ∈ 𝐹) |
| 38 | lclkrlem1.l | . . . . . . . . . . 11 ⊢ 𝐿 = (LKer‘𝑈) | |
| 39 | 2, 30, 18, 1, 38 | lkr0f 39082 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘𝑅)}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘𝑅)})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘𝑅)}) = ((Base‘𝑈) × {(0g‘𝑅)}))) |
| 40 | 9, 37, 39 | syl2anc2 585 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘𝑅)})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘𝑅)}) = ((Base‘𝑈) × {(0g‘𝑅)}))) |
| 41 | 36, 40 | mpbiri 258 | . . . . . . . 8 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘𝑅)})) = (Base‘𝑈)) |
| 42 | 35, 41 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((0g‘𝑅) · 𝐺)) = (Base‘𝑈)) |
| 43 | 21, 42 | sylan9eqr 2787 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑅)) → (𝐿‘(𝑋 · 𝐺)) = (Base‘𝑈)) |
| 44 | 43 | fveq2d 6864 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑅)) → ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) = ( ⊥ ‘(Base‘𝑈))) |
| 45 | 44 | fveq2d 6864 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
| 46 | 20, 45, 43 | 3eqtr4d 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = (𝐿‘(𝑋 · 𝐺))) |
| 47 | 14 | simprd 495 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 48 | 47 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 49 | 6, 7, 8 | dvhlvec 41098 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 50 | 49 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → 𝑈 ∈ LVec) |
| 51 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → 𝐺 ∈ 𝐹) |
| 52 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → 𝑋 ∈ 𝐵) |
| 53 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → 𝑋 ≠ (0g‘𝑅)) | |
| 54 | 2, 3, 30, 1, 38, 4, 5, 50, 51, 52, 53 | ldualkrsc 39155 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘𝐺)) |
| 55 | 54 | fveq2d 6864 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → ( ⊥ ‘(𝐿‘(𝑋 · 𝐺))) = ( ⊥ ‘(𝐿‘𝐺))) |
| 56 | 55 | fveq2d 6864 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 57 | 48, 56, 54 | 3eqtr4d 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = (𝐿‘(𝑋 · 𝐺))) |
| 58 | 46, 57 | pm2.61dane 3013 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = (𝐿‘(𝑋 · 𝐺))) |
| 59 | 12 | lcfl1lem 41480 | . 2 ⊢ ((𝑋 · 𝐺) ∈ 𝐶 ↔ ((𝑋 · 𝐺) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘(𝑋 · 𝐺)))) = (𝐿‘(𝑋 · 𝐺)))) |
| 60 | 16, 58, 59 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 {csn 4591 × cxp 5638 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 LModclmod 20772 LVecclvec 21015 LFnlclfn 39045 LKerclk 39073 LDualcld 39111 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 ocHcoch 41336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17410 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cntz 19255 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 df-lfl 39046 df-lkr 39074 df-ldual 39112 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-edring 40746 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 df-doch 41337 |
| This theorem is referenced by: lclkr 41522 lclkrslem1 41526 |
| Copyright terms: Public domain | W3C validator |