Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   GIF version

Theorem mapdval4N 38648
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 38519 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h 𝐻 = (LHyp‘𝐾)
mapdval4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval4.s 𝑆 = (LSubSp‘𝑈)
mapdval4.f 𝐹 = (LFnl‘𝑈)
mapdval4.l 𝐿 = (LKer‘𝑈)
mapdval4.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval4.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval4.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval4N (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Distinct variable groups:   𝑣,𝑓,𝐹   𝑓,𝐾   𝑣,𝐿   𝑣,𝑂   𝑇,𝑓,𝑣   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑓)   𝑈(𝑓)   𝐻(𝑣,𝑓)   𝐾(𝑣)   𝐿(𝑓)   𝑀(𝑣,𝑓)   𝑂(𝑓)   𝑊(𝑣)

Proof of Theorem mapdval4N
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval4.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval4.s . . 3 𝑆 = (LSubSp‘𝑈)
4 eqid 2818 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 mapdval4.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval4.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval4.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval4.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval4.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval4.t . . 3 (𝜑𝑇𝑆)
11 eqid 2818 . . 3 {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 38646 . 2 (𝜑 → (𝑀𝑇) = {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})})
1311lcfl1lem 38507 . . . . . 6 (𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
1413anbi1i 623 . . . . 5 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
15 anass 469 . . . . 5 (((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
1614, 15bitri 276 . . . 4 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
17 r19.42v 3347 . . . . . 6 (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
18 simprr 769 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
1918fveq2d 6667 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣})))
20 simprl 767 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
21 eqid 2818 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
229adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓𝐹) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 481 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423adantr 481 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2510adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑓𝐹) → 𝑇𝑆)
2621, 3lssel 19638 . . . . . . . . . . . . 13 ((𝑇𝑆𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2725, 26sylan 580 . . . . . . . . . . . 12 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2827snssd 4734 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → {𝑣} ⊆ (Base‘𝑈))
2928adantr 481 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
301, 2, 7, 21, 4, 24, 29dochocsp 38395 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣}))
3119, 20, 303eqtr3rd 2862 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿𝑓))
3227adantr 481 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑣 ∈ (Base‘𝑈))
33 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘{𝑣}) = (𝐿𝑓))
3433eqcomd 2824 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐿𝑓) = (𝑂‘{𝑣}))
35 sneq 4567 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → {𝑤} = {𝑣})
3635fveq2d 6667 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣}))
3736rspceeqv 3635 . . . . . . . . . . 11 ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3832, 34, 37syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3923adantr 481 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 simpllr 772 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑓𝐹)
411, 7, 2, 21, 5, 6, 39, 40lcfl8a 38519 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤})))
4238, 41mpbird 258 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
431, 2, 7, 21, 4, 23, 27dochocsn 38397 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣}))
44 fveq2 6663 . . . . . . . . . . 11 ((𝑂‘{𝑣}) = (𝐿𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿𝑓)))
4543, 44sylan9req 2874 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿𝑓)))
4645eqcomd 2824 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
4742, 46jca 512 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
4831, 47impbida 797 . . . . . . 7 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿𝑓)))
4948rexbidva 3293 . . . . . 6 ((𝜑𝑓𝐹) → (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5017, 49syl5bbr 286 . . . . 5 ((𝜑𝑓𝐹) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5150pm5.32da 579 . . . 4 (𝜑 → ((𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5216, 51syl5bb 284 . . 3 (𝜑 → ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5352rabbidva2 3474 . 2 (𝜑 → {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
5412, 53eqtrd 2853 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  wss 3933  {csn 4557  cfv 6348  Basecbs 16471  LSubSpclss 19632  LSpanclspn 19672  LFnlclfn 36073  LKerclk 36101  HLchlt 36366  LHypclh 37000  DVecHcdvh 38094  ocHcoch 38363  mapdcmpd 38640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-riotaBAD 35969
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-undef 7928  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-0g 16703  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-p1 17638  df-lat 17644  df-clat 17706  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lvec 19804  df-lsatoms 35992  df-lshyp 35993  df-lfl 36074  df-lkr 36102  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-llines 36514  df-lplanes 36515  df-lvols 36516  df-lines 36517  df-psubsp 36519  df-pmap 36520  df-padd 36812  df-lhyp 37004  df-laut 37005  df-ldil 37120  df-ltrn 37121  df-trl 37175  df-tgrp 37759  df-tendo 37771  df-edring 37773  df-dveca 38019  df-disoa 38045  df-dvech 38095  df-dib 38155  df-dic 38189  df-dih 38245  df-doch 38364  df-djh 38411  df-mapd 38641
This theorem is referenced by:  mapdval5N  38649  mapd1dim2lem1N  38660
  Copyright terms: Public domain W3C validator