Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   GIF version

Theorem mapdval4N 41633
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 41504 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h 𝐻 = (LHyp‘𝐾)
mapdval4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval4.s 𝑆 = (LSubSp‘𝑈)
mapdval4.f 𝐹 = (LFnl‘𝑈)
mapdval4.l 𝐿 = (LKer‘𝑈)
mapdval4.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval4.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval4.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval4N (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Distinct variable groups:   𝑣,𝑓,𝐹   𝑓,𝐾   𝑣,𝐿   𝑣,𝑂   𝑇,𝑓,𝑣   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑓)   𝑈(𝑓)   𝐻(𝑣,𝑓)   𝐾(𝑣)   𝐿(𝑓)   𝑀(𝑣,𝑓)   𝑂(𝑓)   𝑊(𝑣)

Proof of Theorem mapdval4N
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval4.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval4.s . . 3 𝑆 = (LSubSp‘𝑈)
4 eqid 2730 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 mapdval4.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval4.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval4.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval4.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval4.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval4.t . . 3 (𝜑𝑇𝑆)
11 eqid 2730 . . 3 {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 41631 . 2 (𝜑 → (𝑀𝑇) = {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})})
1311lcfl1lem 41492 . . . . . 6 (𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
1413anbi1i 624 . . . . 5 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
15 anass 468 . . . . 5 (((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
1614, 15bitri 275 . . . 4 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
17 r19.42v 3170 . . . . . 6 (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
18 simprr 772 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
1918fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣})))
20 simprl 770 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
21 eqid 2730 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
229adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓𝐹) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2510adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐹) → 𝑇𝑆)
2621, 3lssel 20850 . . . . . . . . . . . . 13 ((𝑇𝑆𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2725, 26sylan 580 . . . . . . . . . . . 12 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2827snssd 4776 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → {𝑣} ⊆ (Base‘𝑈))
2928adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
301, 2, 7, 21, 4, 24, 29dochocsp 41380 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣}))
3119, 20, 303eqtr3rd 2774 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿𝑓))
3227adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑣 ∈ (Base‘𝑈))
33 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘{𝑣}) = (𝐿𝑓))
3433eqcomd 2736 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐿𝑓) = (𝑂‘{𝑣}))
35 sneq 4602 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → {𝑤} = {𝑣})
3635fveq2d 6865 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣}))
3736rspceeqv 3614 . . . . . . . . . . 11 ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3832, 34, 37syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3923adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑓𝐹)
411, 7, 2, 21, 5, 6, 39, 40lcfl8a 41504 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤})))
4238, 41mpbird 257 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
431, 2, 7, 21, 4, 23, 27dochocsn 41382 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣}))
44 fveq2 6861 . . . . . . . . . . 11 ((𝑂‘{𝑣}) = (𝐿𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿𝑓)))
4543, 44sylan9req 2786 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿𝑓)))
4645eqcomd 2736 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
4742, 46jca 511 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
4831, 47impbida 800 . . . . . . 7 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿𝑓)))
4948rexbidva 3156 . . . . . 6 ((𝜑𝑓𝐹) → (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5017, 49bitr3id 285 . . . . 5 ((𝜑𝑓𝐹) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5150pm5.32da 579 . . . 4 (𝜑 → ((𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5216, 51bitrid 283 . . 3 (𝜑 → ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5352rabbidva2 3410 . 2 (𝜑 → {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
5412, 53eqtrd 2765 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  wss 3917  {csn 4592  cfv 6514  Basecbs 17186  LSubSpclss 20844  LSpanclspn 20884  LFnlclfn 39057  LKerclk 39085  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  ocHcoch 41348  mapdcmpd 41625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lfl 39058  df-lkr 39086  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396  df-mapd 41626
This theorem is referenced by:  mapdval5N  41634  mapd1dim2lem1N  41645
  Copyright terms: Public domain W3C validator