| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mapdval4.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | mapdval4.u | . . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | mapdval4.s | . . 3
⊢ 𝑆 = (LSubSp‘𝑈) | 
| 4 |  | eqid 2736 | . . 3
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) | 
| 5 |  | mapdval4.f | . . 3
⊢ 𝐹 = (LFnl‘𝑈) | 
| 6 |  | mapdval4.l | . . 3
⊢ 𝐿 = (LKer‘𝑈) | 
| 7 |  | mapdval4.o | . . 3
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | 
| 8 |  | mapdval4.m | . . 3
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | 
| 9 |  | mapdval4.k | . . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 10 |  | mapdval4.t | . . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) | 
| 11 |  | eqid 2736 | . . 3
⊢ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | mapdval2N 41633 | . 2
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})}) | 
| 13 | 11 | lcfl1lem 41494 | . . . . . 6
⊢ (𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) | 
| 14 | 13 | anbi1i 624 | . . . . 5
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) | 
| 15 |  | anass 468 | . . . . 5
⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) | 
| 16 | 14, 15 | bitri 275 | . . . 4
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) | 
| 17 |  | r19.42v 3190 | . . . . . 6
⊢
(∃𝑣 ∈
𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) | 
| 18 |  | simprr 772 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) | 
| 19 | 18 | fveq2d 6909 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣}))) | 
| 20 |  | simprl 770 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) | 
| 21 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) | 
| 22 | 9 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 23 | 22 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 24 | 23 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 25 | 10 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → 𝑇 ∈ 𝑆) | 
| 26 | 21, 3 | lssel 20936 | . . . . . . . . . . . . 13
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) | 
| 27 | 25, 26 | sylan 580 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) | 
| 28 | 27 | snssd 4808 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → {𝑣} ⊆ (Base‘𝑈)) | 
| 29 | 28 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈)) | 
| 30 | 1, 2, 7, 21, 4, 24, 29 | dochocsp 41382 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣})) | 
| 31 | 19, 20, 30 | 3eqtr3rd 2785 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) | 
| 32 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑣 ∈ (Base‘𝑈)) | 
| 33 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) | 
| 34 | 33 | eqcomd 2742 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐿‘𝑓) = (𝑂‘{𝑣})) | 
| 35 |  | sneq 4635 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → {𝑤} = {𝑣}) | 
| 36 | 35 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣})) | 
| 37 | 36 | rspceeqv 3644 | . . . . . . . . . . 11
⊢ ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿‘𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) | 
| 38 | 32, 34, 37 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) | 
| 39 | 23 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 40 |  | simpllr 775 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) | 
| 41 | 1, 7, 2, 21, 5, 6,
39, 40 | lcfl8a 41506 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤}))) | 
| 42 | 38, 41 | mpbird 257 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) | 
| 43 | 1, 2, 7, 21, 4, 23, 27 | dochocsn 41384 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣})) | 
| 44 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ ((𝑂‘{𝑣}) = (𝐿‘𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿‘𝑓))) | 
| 45 | 43, 44 | sylan9req 2797 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿‘𝑓))) | 
| 46 | 45 | eqcomd 2742 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) | 
| 47 | 42, 46 | jca 511 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) | 
| 48 | 31, 47 | impbida 800 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿‘𝑓))) | 
| 49 | 48 | rexbidva 3176 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (∃𝑣 ∈ 𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) | 
| 50 | 17, 49 | bitr3id 285 | . . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) | 
| 51 | 50 | pm5.32da 579 | . . . 4
⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) | 
| 52 | 16, 51 | bitrid 283 | . . 3
⊢ (𝜑 → ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) | 
| 53 | 52 | rabbidva2 3437 | . 2
⊢ (𝜑 → {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) | 
| 54 | 12, 53 | eqtrd 2776 | 1
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) |