| Step | Hyp | Ref
| Expression |
| 1 | | mapdval4.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | mapdval4.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | mapdval4.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
| 4 | | eqid 2736 |
. . 3
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
| 5 | | mapdval4.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑈) |
| 6 | | mapdval4.l |
. . 3
⊢ 𝐿 = (LKer‘𝑈) |
| 7 | | mapdval4.o |
. . 3
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| 8 | | mapdval4.m |
. . 3
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 9 | | mapdval4.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 10 | | mapdval4.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 11 | | eqid 2736 |
. . 3
⊢ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | mapdval2N 41654 |
. 2
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})}) |
| 13 | 11 | lcfl1lem 41515 |
. . . . . 6
⊢ (𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
| 14 | 13 | anbi1i 624 |
. . . . 5
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
| 15 | | anass 468 |
. . . . 5
⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) |
| 16 | 14, 15 | bitri 275 |
. . . 4
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) |
| 17 | | r19.42v 3177 |
. . . . . 6
⊢
(∃𝑣 ∈
𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
| 18 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) |
| 19 | 18 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣}))) |
| 20 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
| 21 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 22 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 25 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → 𝑇 ∈ 𝑆) |
| 26 | 21, 3 | lssel 20899 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) |
| 27 | 25, 26 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) |
| 28 | 27 | snssd 4790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → {𝑣} ⊆ (Base‘𝑈)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈)) |
| 30 | 1, 2, 7, 21, 4, 24, 29 | dochocsp 41403 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣})) |
| 31 | 19, 20, 30 | 3eqtr3rd 2780 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) |
| 32 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑣 ∈ (Base‘𝑈)) |
| 33 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) |
| 34 | 33 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐿‘𝑓) = (𝑂‘{𝑣})) |
| 35 | | sneq 4616 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → {𝑤} = {𝑣}) |
| 36 | 35 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣})) |
| 37 | 36 | rspceeqv 3629 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿‘𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) |
| 38 | 32, 34, 37 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) |
| 39 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 40 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) |
| 41 | 1, 7, 2, 21, 5, 6,
39, 40 | lcfl8a 41527 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤}))) |
| 42 | 38, 41 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
| 43 | 1, 2, 7, 21, 4, 23, 27 | dochocsn 41405 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣})) |
| 44 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ ((𝑂‘{𝑣}) = (𝐿‘𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿‘𝑓))) |
| 45 | 43, 44 | sylan9req 2792 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿‘𝑓))) |
| 46 | 45 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) |
| 47 | 42, 46 | jca 511 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
| 48 | 31, 47 | impbida 800 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
| 49 | 48 | rexbidva 3163 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (∃𝑣 ∈ 𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
| 50 | 17, 49 | bitr3id 285 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
| 51 | 50 | pm5.32da 579 |
. . . 4
⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) |
| 52 | 16, 51 | bitrid 283 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) |
| 53 | 52 | rabbidva2 3422 |
. 2
⊢ (𝜑 → {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) |
| 54 | 12, 53 | eqtrd 2771 |
1
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) |