Step | Hyp | Ref
| Expression |
1 | | mapdval4.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdval4.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | mapdval4.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
4 | | eqid 2738 |
. . 3
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
5 | | mapdval4.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑈) |
6 | | mapdval4.l |
. . 3
⊢ 𝐿 = (LKer‘𝑈) |
7 | | mapdval4.o |
. . 3
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
8 | | mapdval4.m |
. . 3
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
9 | | mapdval4.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | mapdval4.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
11 | | eqid 2738 |
. . 3
⊢ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | mapdval2N 39644 |
. 2
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})}) |
13 | 11 | lcfl1lem 39505 |
. . . . . 6
⊢ (𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
14 | 13 | anbi1i 624 |
. . . . 5
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
15 | | anass 469 |
. . . . 5
⊢ (((𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) |
16 | 14, 15 | bitri 274 |
. . . 4
⊢ ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})))) |
17 | | r19.42v 3279 |
. . . . . 6
⊢
(∃𝑣 ∈
𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
18 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) |
19 | 18 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣}))) |
20 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
22 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 22 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | 10 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → 𝑇 ∈ 𝑆) |
26 | 21, 3 | lssel 20199 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) |
27 | 25, 26 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → 𝑣 ∈ (Base‘𝑈)) |
28 | 27 | snssd 4742 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → {𝑣} ⊆ (Base‘𝑈)) |
29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈)) |
30 | 1, 2, 7, 21, 4, 24, 29 | dochocsp 39393 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣})) |
31 | 19, 20, 30 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) |
32 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑣 ∈ (Base‘𝑈)) |
33 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘{𝑣}) = (𝐿‘𝑓)) |
34 | 33 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐿‘𝑓) = (𝑂‘{𝑣})) |
35 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → {𝑤} = {𝑣}) |
36 | 35 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣})) |
37 | 36 | rspceeqv 3575 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿‘𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) |
38 | 32, 34, 37 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤})) |
39 | 23 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | | simpllr 773 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → 𝑓 ∈ 𝐹) |
41 | 1, 7, 2, 21, 5, 6,
39, 40 | lcfl8a 39517 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿‘𝑓) = (𝑂‘{𝑤}))) |
42 | 38, 41 | mpbird 256 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)) |
43 | 1, 2, 7, 21, 4, 23, 27 | dochocsn 39395 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣})) |
44 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ ((𝑂‘{𝑣}) = (𝐿‘𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿‘𝑓))) |
45 | 43, 44 | sylan9req 2799 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿‘𝑓))) |
46 | 45 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) |
47 | 42, 46 | jca 512 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) ∧ (𝑂‘{𝑣}) = (𝐿‘𝑓)) → ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) |
48 | 31, 47 | impbida 798 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ 𝑇) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
49 | 48 | rexbidva 3225 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (∃𝑣 ∈ 𝑇 ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
50 | 17, 49 | bitr3id 285 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐹) → (((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓))) |
51 | 50 | pm5.32da 579 |
. . . 4
⊢ (𝜑 → ((𝑓 ∈ 𝐹 ∧ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) |
52 | 16, 51 | syl5bb 283 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∧ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓 ∈ 𝐹 ∧ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)))) |
53 | 52 | rabbidva2 3411 |
. 2
⊢ (𝜑 → {𝑓 ∈ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) |
54 | 12, 53 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐹 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘{𝑣}) = (𝐿‘𝑓)}) |