Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   GIF version

Theorem mapdval4N 41635
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 41506 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h 𝐻 = (LHyp‘𝐾)
mapdval4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval4.s 𝑆 = (LSubSp‘𝑈)
mapdval4.f 𝐹 = (LFnl‘𝑈)
mapdval4.l 𝐿 = (LKer‘𝑈)
mapdval4.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval4.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval4.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval4N (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Distinct variable groups:   𝑣,𝑓,𝐹   𝑓,𝐾   𝑣,𝐿   𝑣,𝑂   𝑇,𝑓,𝑣   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑓)   𝑈(𝑓)   𝐻(𝑣,𝑓)   𝐾(𝑣)   𝐿(𝑓)   𝑀(𝑣,𝑓)   𝑂(𝑓)   𝑊(𝑣)

Proof of Theorem mapdval4N
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval4.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval4.s . . 3 𝑆 = (LSubSp‘𝑈)
4 eqid 2736 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 mapdval4.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval4.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval4.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval4.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval4.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval4.t . . 3 (𝜑𝑇𝑆)
11 eqid 2736 . . 3 {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 41633 . 2 (𝜑 → (𝑀𝑇) = {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})})
1311lcfl1lem 41494 . . . . . 6 (𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
1413anbi1i 624 . . . . 5 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
15 anass 468 . . . . 5 (((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
1614, 15bitri 275 . . . 4 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
17 r19.42v 3190 . . . . . 6 (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
18 simprr 772 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
1918fveq2d 6909 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣})))
20 simprl 770 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
21 eqid 2736 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
229adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓𝐹) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2510adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐹) → 𝑇𝑆)
2621, 3lssel 20936 . . . . . . . . . . . . 13 ((𝑇𝑆𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2725, 26sylan 580 . . . . . . . . . . . 12 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2827snssd 4808 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → {𝑣} ⊆ (Base‘𝑈))
2928adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
301, 2, 7, 21, 4, 24, 29dochocsp 41382 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣}))
3119, 20, 303eqtr3rd 2785 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿𝑓))
3227adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑣 ∈ (Base‘𝑈))
33 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘{𝑣}) = (𝐿𝑓))
3433eqcomd 2742 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐿𝑓) = (𝑂‘{𝑣}))
35 sneq 4635 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → {𝑤} = {𝑣})
3635fveq2d 6909 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣}))
3736rspceeqv 3644 . . . . . . . . . . 11 ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3832, 34, 37syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3923adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑓𝐹)
411, 7, 2, 21, 5, 6, 39, 40lcfl8a 41506 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤})))
4238, 41mpbird 257 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
431, 2, 7, 21, 4, 23, 27dochocsn 41384 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣}))
44 fveq2 6905 . . . . . . . . . . 11 ((𝑂‘{𝑣}) = (𝐿𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿𝑓)))
4543, 44sylan9req 2797 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿𝑓)))
4645eqcomd 2742 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
4742, 46jca 511 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
4831, 47impbida 800 . . . . . . 7 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿𝑓)))
4948rexbidva 3176 . . . . . 6 ((𝜑𝑓𝐹) → (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5017, 49bitr3id 285 . . . . 5 ((𝜑𝑓𝐹) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5150pm5.32da 579 . . . 4 (𝜑 → ((𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5216, 51bitrid 283 . . 3 (𝜑 → ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5352rabbidva2 3437 . 2 (𝜑 → {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
5412, 53eqtrd 2776 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  wss 3950  {csn 4625  cfv 6560  Basecbs 17248  LSubSpclss 20930  LSpanclspn 20970  LFnlclfn 39059  LKerclk 39087  HLchlt 39352  LHypclh 39987  DVecHcdvh 41081  ocHcoch 41350  mapdcmpd 41627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lsatoms 38978  df-lshyp 38979  df-lfl 39060  df-lkr 39088  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tgrp 40746  df-tendo 40758  df-edring 40760  df-dveca 41006  df-disoa 41032  df-dvech 41082  df-dib 41142  df-dic 41176  df-dih 41232  df-doch 41351  df-djh 41398  df-mapd 41628
This theorem is referenced by:  mapdval5N  41636  mapd1dim2lem1N  41647
  Copyright terms: Public domain W3C validator