Step | Hyp | Ref
| Expression |
1 | | lcf1o.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
2 | 1 | fvexi 6731 |
. . . . 5
⊢ 𝑉 ∈ V |
3 | 2 | mptex 7039 |
. . . 4
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∈ V |
4 | | lcf1o.j |
. . . 4
⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
5 | 3, 4 | fnmpti 6521 |
. . 3
⊢ 𝐽 Fn (𝑉 ∖ { 0 }) |
6 | 5 | a1i 11 |
. 2
⊢ (𝜑 → 𝐽 Fn (𝑉 ∖ { 0 })) |
7 | | fvelrnb 6773 |
. . . . 5
⊢ (𝐽 Fn (𝑉 ∖ { 0 }) → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
9 | | lcf1o.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | lcf1o.o |
. . . . . . . . 9
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
11 | | lcf1o.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
12 | | lcf1o.a |
. . . . . . . . 9
⊢ + =
(+g‘𝑈) |
13 | | lcf1o.t |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑈) |
14 | | lcf1o.s |
. . . . . . . . 9
⊢ 𝑆 = (Scalar‘𝑈) |
15 | | lcf1o.r |
. . . . . . . . 9
⊢ 𝑅 = (Base‘𝑆) |
16 | | lcf1o.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
17 | | lcf1o.f |
. . . . . . . . 9
⊢ 𝐹 = (LFnl‘𝑈) |
18 | | lcf1o.l |
. . . . . . . . 9
⊢ 𝐿 = (LKer‘𝑈) |
19 | | lcf1o.d |
. . . . . . . . 9
⊢ 𝐷 = (LDual‘𝑈) |
20 | | lcf1o.q |
. . . . . . . . 9
⊢ 𝑄 = (0g‘𝐷) |
21 | | lcf1o.c |
. . . . . . . . 9
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
22 | | lcflo.k |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 22 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
25 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 23, 24 | lcfrlem8 39300 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
26 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
27 | | sneq 4551 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) |
28 | 27 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → ( ⊥ ‘{𝑦}) = ( ⊥ ‘{𝑧})) |
29 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → (𝑘 · 𝑦) = (𝑘 · 𝑧)) |
30 | 29 | oveq2d 7229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑘 · 𝑧))) |
31 | 30 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
32 | 28, 31 | rexeqbidv 3314 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
33 | 32 | riotabidv 7172 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
34 | 33 | mpteq2dv 5151 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
35 | 34 | rspceeqv 3552 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
36 | 24, 26, 35 | sylancl 589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
37 | 36 | olcd 874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) |
38 | 9, 10, 11, 1, 16, 12, 13, 17, 14, 15, 26, 23, 24 | dochflcl 39226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐹) |
39 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 23, 38 | lcfl6 39251 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ↔ ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))) |
40 | 37, 39 | mpbird 260 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶) |
41 | 9, 10, 11, 1, 16, 12, 13, 18, 14, 15, 26, 23, 24 | dochsnkr2cl 39225 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) ∖ { 0 })) |
42 | 9, 10, 11, 1, 16, 17, 18, 23, 38, 41 | dochsnkrlem3 39222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ( ⊥
‘( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
43 | 9, 10, 11, 1, 16, 17, 18, 23, 38, 41 | dochsnkrlem1 39220 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ( ⊥
‘( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) ≠ 𝑉) |
44 | 42, 43 | eqnetrrd 3009 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉) |
45 | 9, 11, 22 | dvhlmod 38861 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | 45 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑈 ∈ LMod) |
47 | 1, 17, 18, 19, 20, 46, 38 | lkr0f2 36912 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = 𝑄)) |
48 | 47 | necon3bid 2985 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)) |
49 | 44, 48 | mpbid 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄) |
50 | | eldifsn 4700 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}) ↔ ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)) |
51 | 40, 49, 50 | sylanbrc 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄})) |
52 | 25, 51 | eqeltrd 2838 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) ∈ (𝐶 ∖ {𝑄})) |
53 | | eleq1 2825 |
. . . . . . 7
⊢ ((𝐽‘𝑧) = 𝑔 → ((𝐽‘𝑧) ∈ (𝐶 ∖ {𝑄}) ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
54 | 52, 53 | syl5ibcom 248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽‘𝑧) = 𝑔 → 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
55 | 54 | rexlimdva 3203 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 → 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
56 | | eldifsn 4700 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐶 ∖ {𝑄}) ↔ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) |
57 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → 𝑔 ∈ 𝐶) |
58 | 45 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑈 ∈ LMod) |
59 | 21 | lcfl1lem 39242 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝐶 ↔ (𝑔 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥
‘(𝐿‘𝑔))) = (𝐿‘𝑔))) |
60 | 59 | simplbi 501 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ 𝐶 → 𝑔 ∈ 𝐹) |
61 | 60 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 ∈ 𝐹) |
62 | 1, 17, 18, 19, 20, 58, 61 | lkr0f2 36912 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = 𝑄)) |
63 | 62 | necon3bid 2985 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) ≠ 𝑉 ↔ 𝑔 ≠ 𝑄)) |
64 | 63 | biimprd 251 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → (𝑔 ≠ 𝑄 → (𝐿‘𝑔) ≠ 𝑉)) |
65 | 64 | impr 458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝐿‘𝑔) ≠ 𝑉) |
66 | 65 | neneqd 2945 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → ¬ (𝐿‘𝑔) = 𝑉) |
67 | 22 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
68 | 60 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄) → 𝑔 ∈ 𝐹) |
69 | 68 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → 𝑔 ∈ 𝐹) |
70 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 67, 69 | lcfl6 39251 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝑔 ∈ 𝐶 ↔ ((𝐿‘𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) |
71 | 70 | biimpa 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
72 | 71 | ord 864 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶) → (¬ (𝐿‘𝑔) = 𝑉 → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
73 | 72 | 3impia 1119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶 ∧ ¬ (𝐿‘𝑔) = 𝑉) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
74 | 57, 66, 73 | mpd3an23 1465 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
75 | 56, 74 | sylan2b 597 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
76 | | eqcom 2744 |
. . . . . . . . 9
⊢ ((𝐽‘𝑧) = 𝑔 ↔ 𝑔 = (𝐽‘𝑧)) |
77 | 22 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
78 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
79 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 77, 78 | lcfrlem8 39300 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
80 | 79 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑔 = (𝐽‘𝑧) ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
81 | 76, 80 | syl5bb 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽‘𝑧) = 𝑔 ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
82 | 81 | rexbidva 3215 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
83 | 75, 82 | mpbird 260 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔) |
84 | 83 | ex 416 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ (𝐶 ∖ {𝑄}) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
85 | 55, 84 | impbid 215 |
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
86 | 8, 85 | bitrd 282 |
. . 3
⊢ (𝜑 → (𝑔 ∈ ran 𝐽 ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
87 | 86 | eqrdv 2735 |
. 2
⊢ (𝜑 → ran 𝐽 = (𝐶 ∖ {𝑄})) |
88 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
89 | | eqid 2737 |
. . . . 5
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) |
90 | | eqid 2737 |
. . . . 5
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) |
91 | | simplrl 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑡 ∈ (𝑉 ∖ { 0 })) |
92 | | simplrr 778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑢 ∈ (𝑉 ∖ { 0 })) |
93 | | simpr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑡) = (𝐽‘𝑢)) |
94 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 91 | lcfrlem8 39300 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑡) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡))))) |
95 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 92 | lcfrlem8 39300 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑢) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))) |
96 | 93, 94, 95 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))) |
97 | 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 88, 89, 90, 91, 92, 96 | lcfl7lem 39250 |
. . . 4
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑡 = 𝑢) |
98 | 97 | ex 416 |
. . 3
⊢ ((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) → ((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢)) |
99 | 98 | ralrimivva 3112 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢)) |
100 | | dff1o6 7086 |
. 2
⊢ (𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) ↔ (𝐽 Fn (𝑉 ∖ { 0 }) ∧ ran 𝐽 = (𝐶 ∖ {𝑄}) ∧ ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢))) |
101 | 6, 87, 99, 100 | syl3anbrc 1345 |
1
⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |