Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Structured version   Visualization version   GIF version

Theorem lcfrlem9 41529
Description: Lemma for lcf1o 41530. (This part has undesirable $d's on 𝐽 and 𝜑 that we remove in lcf1o 41530.) TODO: ugly proof; maybe have better subtheorems or abbreviate some 𝑘 expansions with 𝐽𝑧? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcfrlem9 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0 ,𝑣   𝑣,𝑉,𝑥   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   𝑘,𝐽,𝑣,𝑤,𝑥   𝐶,𝑘,𝑣,𝑤,𝑥   𝑓,𝐹   𝑓,𝐿,𝑘,𝑣,𝑤,𝑥   ,𝑓,𝑘,𝑣   𝑄,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑤   𝑆,𝑘,𝑣,𝑤,𝑥   · ,𝑓,𝑘,𝑣,𝑤   𝑈,𝑘,𝑤,𝑥   𝑓,𝑉,𝑘,𝑤   0 ,𝑘,𝑣,𝑤   𝜑,𝑘,𝑣,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑓)   𝑆(𝑓)   𝑈(𝑣,𝑓)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑓)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑓)

Proof of Theorem lcfrlem9
Dummy variables 𝑦 𝑔 𝑡 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6 𝑉 = (Base‘𝑈)
21fvexi 6840 . . . . 5 𝑉 ∈ V
32mptex 7163 . . . 4 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∈ V
4 lcf1o.j . . . 4 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
53, 4fnmpti 6629 . . 3 𝐽 Fn (𝑉 ∖ { 0 })
65a1i 11 . 2 (𝜑𝐽 Fn (𝑉 ∖ { 0 }))
7 fvelrnb 6887 . . . . 5 (𝐽 Fn (𝑉 ∖ { 0 }) → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
86, 7syl 17 . . . 4 (𝜑 → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
9 lcf1o.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
10 lcf1o.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
11 lcf1o.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 lcf1o.a . . . . . . . . 9 + = (+g𝑈)
13 lcf1o.t . . . . . . . . 9 · = ( ·𝑠𝑈)
14 lcf1o.s . . . . . . . . 9 𝑆 = (Scalar‘𝑈)
15 lcf1o.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
16 lcf1o.z . . . . . . . . 9 0 = (0g𝑈)
17 lcf1o.f . . . . . . . . 9 𝐹 = (LFnl‘𝑈)
18 lcf1o.l . . . . . . . . 9 𝐿 = (LKer‘𝑈)
19 lcf1o.d . . . . . . . . 9 𝐷 = (LDual‘𝑈)
20 lcf1o.q . . . . . . . . 9 𝑄 = (0g𝐷)
21 lcf1o.c . . . . . . . . 9 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
22 lcflo.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 }))
259, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 23, 24lcfrlem8 41528 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
26 eqid 2729 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
27 sneq 4589 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2827fveq2d 6830 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ( ‘{𝑦}) = ( ‘{𝑧}))
29 oveq2 7361 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑘 · 𝑦) = (𝑘 · 𝑧))
3029oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑘 · 𝑧)))
3130eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑧))))
3228, 31rexeqbidv 3311 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
3332riotabidv 7312 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
3433mpteq2dv 5189 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
3534rspceeqv 3602 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
3624, 26, 35sylancl 586 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
3736olcd 874 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
389, 10, 11, 1, 16, 12, 13, 17, 14, 15, 26, 23, 24dochflcl 41454 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐹)
399, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 23, 38lcfl6 41479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ↔ ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))))
4037, 39mpbird 257 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶)
419, 10, 11, 1, 16, 12, 13, 18, 14, 15, 26, 23, 24dochsnkr2cl 41453 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) ∖ { 0 }))
429, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem3 41450 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
439, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem1 41448 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) ≠ 𝑉)
4442, 43eqnetrrd 2993 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉)
459, 11, 22dvhlmod 41089 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LMod)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑈 ∈ LMod)
471, 17, 18, 19, 20, 46, 38lkr0f2 39139 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ↔ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = 𝑄))
4847necon3bid 2969 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉 ↔ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄))
4944, 48mpbid 232 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)
50 eldifsn 4740 . . . . . . . . 9 ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}) ↔ ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ∧ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄))
5140, 49, 50sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}))
5225, 51eqeltrd 2828 . . . . . . 7 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) ∈ (𝐶 ∖ {𝑄}))
53 eleq1 2816 . . . . . . 7 ((𝐽𝑧) = 𝑔 → ((𝐽𝑧) ∈ (𝐶 ∖ {𝑄}) ↔ 𝑔 ∈ (𝐶 ∖ {𝑄})))
5452, 53syl5ibcom 245 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
5554rexlimdva 3130 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
56 eldifsn 4740 . . . . . . . 8 (𝑔 ∈ (𝐶 ∖ {𝑄}) ↔ (𝑔𝐶𝑔𝑄))
57 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → 𝑔𝐶)
5845adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑈 ∈ LMod)
5921lcfl1lem 41470 . . . . . . . . . . . . . . . 16 (𝑔𝐶 ↔ (𝑔𝐹 ∧ ( ‘( ‘(𝐿𝑔))) = (𝐿𝑔)))
6059simplbi 497 . . . . . . . . . . . . . . 15 (𝑔𝐶𝑔𝐹)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔𝐹)
621, 17, 18, 19, 20, 58, 61lkr0f2 39139 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → ((𝐿𝑔) = 𝑉𝑔 = 𝑄))
6362necon3bid 2969 . . . . . . . . . . . 12 ((𝜑𝑔𝐶) → ((𝐿𝑔) ≠ 𝑉𝑔𝑄))
6463biimprd 248 . . . . . . . . . . 11 ((𝜑𝑔𝐶) → (𝑔𝑄 → (𝐿𝑔) ≠ 𝑉))
6564impr 454 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝐿𝑔) ≠ 𝑉)
6665neneqd 2930 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → ¬ (𝐿𝑔) = 𝑉)
6722adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6860adantr 480 . . . . . . . . . . . . . 14 ((𝑔𝐶𝑔𝑄) → 𝑔𝐹)
6968adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → 𝑔𝐹)
709, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 67, 69lcfl6 41479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝑔𝐶 ↔ ((𝐿𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))))
7170biimpa 476 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶) → ((𝐿𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
7271ord 864 . . . . . . . . . 10 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶) → (¬ (𝐿𝑔) = 𝑉 → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
73723impia 1117 . . . . . . . . 9 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶 ∧ ¬ (𝐿𝑔) = 𝑉) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
7457, 66, 73mpd3an23 1465 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
7556, 74sylan2b 594 . . . . . . 7 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
76 eqcom 2736 . . . . . . . . 9 ((𝐽𝑧) = 𝑔𝑔 = (𝐽𝑧))
7722ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
78 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 }))
799, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 77, 78lcfrlem8 41528 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
8079eqeq2d 2740 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑔 = (𝐽𝑧) ↔ 𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8176, 80bitrid 283 . . . . . . . 8 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽𝑧) = 𝑔𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8281rexbidva 3151 . . . . . . 7 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8375, 82mpbird 257 . . . . . 6 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔)
8483ex 412 . . . . 5 (𝜑 → (𝑔 ∈ (𝐶 ∖ {𝑄}) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
8555, 84impbid 212 . . . 4 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
868, 85bitrd 279 . . 3 (𝜑 → (𝑔 ∈ ran 𝐽𝑔 ∈ (𝐶 ∖ {𝑄})))
8786eqrdv 2727 . 2 (𝜑 → ran 𝐽 = (𝐶 ∖ {𝑄}))
8822ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
89 eqid 2729 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡))))
90 eqid 2729 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))
91 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑡 ∈ (𝑉 ∖ { 0 }))
92 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑢 ∈ (𝑉 ∖ { 0 }))
93 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑡) = (𝐽𝑢))
949, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 91lcfrlem8 41528 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑡) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))))
959, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 92lcfrlem8 41528 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑢) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))))
9693, 94, 953eqtr3d 2772 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))))
979, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 88, 89, 90, 91, 92, 96lcfl7lem 41478 . . . 4 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑡 = 𝑢)
9897ex 412 . . 3 ((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) → ((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢))
9998ralrimivva 3172 . 2 (𝜑 → ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢))
100 dff1o6 7216 . 2 (𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) ↔ (𝐽 Fn (𝑉 ∖ { 0 }) ∧ ran 𝐽 = (𝐶 ∖ {𝑄}) ∧ ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢)))
1016, 87, 99, 100syl3anbrc 1344 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cdif 3902  {csn 4579  cmpt 5176  ran crn 5624   Fn wfn 6481  1-1-ontowf1o 6485  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  LModclmod 20781  LFnlclfn 39035  LKerclk 39063  LDualcld 39101  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374
This theorem is referenced by:  lcf1o  41530
  Copyright terms: Public domain W3C validator