Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Structured version   Visualization version   GIF version

Theorem lcfrlem9 40924
Description: Lemma for lcf1o 40925. (This part has undesirable $d's on 𝐽 and πœ‘ that we remove in lcf1o 40925.) TODO: ugly proof; maybe have better subtheorems or abbreviate some β„©π‘˜ expansions with π½β€˜π‘§? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHypβ€˜πΎ)
lcf1o.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lcf1o.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lcf1o.v 𝑉 = (Baseβ€˜π‘ˆ)
lcf1o.a + = (+gβ€˜π‘ˆ)
lcf1o.t Β· = ( ·𝑠 β€˜π‘ˆ)
lcf1o.s 𝑆 = (Scalarβ€˜π‘ˆ)
lcf1o.r 𝑅 = (Baseβ€˜π‘†)
lcf1o.z 0 = (0gβ€˜π‘ˆ)
lcf1o.f 𝐹 = (LFnlβ€˜π‘ˆ)
lcf1o.l 𝐿 = (LKerβ€˜π‘ˆ)
lcf1o.d 𝐷 = (LDualβ€˜π‘ˆ)
lcf1o.q 𝑄 = (0gβ€˜π·)
lcf1o.c 𝐢 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
lcf1o.j 𝐽 = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))))
lcflo.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
lcfrlem9 (πœ‘ β†’ 𝐽:(𝑉 βˆ– { 0 })–1-1-ontoβ†’(𝐢 βˆ– {𝑄}))
Distinct variable groups:   π‘₯,𝑀, βŠ₯   π‘₯, 0 ,𝑣   𝑣,𝑉,π‘₯   π‘₯, Β·   𝑣,π‘˜,𝑀,π‘₯, +   π‘₯,𝑅   𝑓,π‘˜,𝑣,𝑀,π‘₯, +   π‘˜,𝐽,𝑣,𝑀,π‘₯   𝐢,π‘˜,𝑣,𝑀,π‘₯   𝑓,𝐹   𝑓,𝐿,π‘˜,𝑣,𝑀,π‘₯   βŠ₯ ,𝑓,π‘˜,𝑣   𝑄,π‘˜,𝑣,𝑀,π‘₯   𝑅,𝑓,π‘˜,𝑣,𝑀   𝑆,π‘˜,𝑣,𝑀,π‘₯   Β· ,𝑓,π‘˜,𝑣,𝑀   π‘ˆ,π‘˜,𝑀,π‘₯   𝑓,𝑉,π‘˜,𝑀   0 ,π‘˜,𝑣,𝑀   πœ‘,π‘˜,𝑣,𝑀,π‘₯
Allowed substitution hints:   πœ‘(𝑓)   𝐢(𝑓)   𝐷(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝑄(𝑓)   𝑆(𝑓)   π‘ˆ(𝑣,𝑓)   𝐹(π‘₯,𝑀,𝑣,π‘˜)   𝐻(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐽(𝑓)   𝐾(π‘₯,𝑀,𝑣,𝑓,π‘˜)   π‘Š(π‘₯,𝑀,𝑣,𝑓,π‘˜)   0 (𝑓)

Proof of Theorem lcfrlem9
Dummy variables 𝑦 𝑔 𝑑 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6 𝑉 = (Baseβ€˜π‘ˆ)
21fvexi 6896 . . . . 5 𝑉 ∈ V
32mptex 7217 . . . 4 (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))) ∈ V
4 lcf1o.j . . . 4 𝐽 = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))))
53, 4fnmpti 6684 . . 3 𝐽 Fn (𝑉 βˆ– { 0 })
65a1i 11 . 2 (πœ‘ β†’ 𝐽 Fn (𝑉 βˆ– { 0 }))
7 fvelrnb 6943 . . . . 5 (𝐽 Fn (𝑉 βˆ– { 0 }) β†’ (𝑔 ∈ ran 𝐽 ↔ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔))
86, 7syl 17 . . . 4 (πœ‘ β†’ (𝑔 ∈ ran 𝐽 ↔ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔))
9 lcf1o.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
10 lcf1o.o . . . . . . . . 9 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
11 lcf1o.u . . . . . . . . 9 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
12 lcf1o.a . . . . . . . . 9 + = (+gβ€˜π‘ˆ)
13 lcf1o.t . . . . . . . . 9 Β· = ( ·𝑠 β€˜π‘ˆ)
14 lcf1o.s . . . . . . . . 9 𝑆 = (Scalarβ€˜π‘ˆ)
15 lcf1o.r . . . . . . . . 9 𝑅 = (Baseβ€˜π‘†)
16 lcf1o.z . . . . . . . . 9 0 = (0gβ€˜π‘ˆ)
17 lcf1o.f . . . . . . . . 9 𝐹 = (LFnlβ€˜π‘ˆ)
18 lcf1o.l . . . . . . . . 9 𝐿 = (LKerβ€˜π‘ˆ)
19 lcf1o.d . . . . . . . . 9 𝐷 = (LDualβ€˜π‘ˆ)
20 lcf1o.q . . . . . . . . 9 𝑄 = (0gβ€˜π·)
21 lcf1o.c . . . . . . . . 9 𝐢 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
22 lcflo.k . . . . . . . . . 10 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2322adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
24 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ 𝑧 ∈ (𝑉 βˆ– { 0 }))
259, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 23, 24lcfrlem8 40923 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (π½β€˜π‘§) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
26 eqid 2724 . . . . . . . . . . . 12 (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))
27 sneq 4631 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 β†’ {𝑦} = {𝑧})
2827fveq2d 6886 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 β†’ ( βŠ₯ β€˜{𝑦}) = ( βŠ₯ β€˜{𝑧}))
29 oveq2 7410 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 β†’ (π‘˜ Β· 𝑦) = (π‘˜ Β· 𝑧))
3029oveq2d 7418 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 β†’ (𝑀 + (π‘˜ Β· 𝑦)) = (𝑀 + (π‘˜ Β· 𝑧)))
3130eqeq2d 2735 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 β†’ (𝑣 = (𝑀 + (π‘˜ Β· 𝑦)) ↔ 𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))
3228, 31rexeqbidv 3335 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 β†’ (βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦)) ↔ βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))
3332riotabidv 7360 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 β†’ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦))) = (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))
3433mpteq2dv 5241 . . . . . . . . . . . . 13 (𝑦 = 𝑧 β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
3534rspceeqv 3626 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑉 βˆ– { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) β†’ βˆƒπ‘¦ ∈ (𝑉 βˆ– { 0 })(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦)))))
3624, 26, 35sylancl 585 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ βˆƒπ‘¦ ∈ (𝑉 βˆ– { 0 })(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦)))))
3736olcd 871 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) = 𝑉 ∨ βˆƒπ‘¦ ∈ (𝑉 βˆ– { 0 })(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦))))))
389, 10, 11, 1, 16, 12, 13, 17, 14, 15, 26, 23, 24dochflcl 40849 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ 𝐹)
399, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 23, 38lcfl6 40874 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ 𝐢 ↔ ((πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) = 𝑉 ∨ βˆƒπ‘¦ ∈ (𝑉 βˆ– { 0 })(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑦})𝑣 = (𝑀 + (π‘˜ Β· 𝑦)))))))
4037, 39mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ 𝐢)
419, 10, 11, 1, 16, 12, 13, 18, 14, 15, 26, 23, 24dochsnkr2cl 40848 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ 𝑧 ∈ (( βŠ₯ β€˜(πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))) βˆ– { 0 }))
429, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem3 40845 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))) = (πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
439, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem1 40843 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))) β‰  𝑉)
4442, 43eqnetrrd 3001 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) β‰  𝑉)
459, 11, 22dvhlmod 40484 . . . . . . . . . . . . 13 (πœ‘ β†’ π‘ˆ ∈ LMod)
4645adantr 480 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ π‘ˆ ∈ LMod)
471, 17, 18, 19, 20, 46, 38lkr0f2 38534 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) = 𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) = 𝑄))
4847necon3bid 2977 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((πΏβ€˜(𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))) β‰  𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) β‰  𝑄))
4944, 48mpbid 231 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) β‰  𝑄)
50 eldifsn 4783 . . . . . . . . 9 ((𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ (𝐢 βˆ– {𝑄}) ↔ ((𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ 𝐢 ∧ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) β‰  𝑄))
5140, 49, 50sylanbrc 582 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))) ∈ (𝐢 βˆ– {𝑄}))
5225, 51eqeltrd 2825 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (π½β€˜π‘§) ∈ (𝐢 βˆ– {𝑄}))
53 eleq1 2813 . . . . . . 7 ((π½β€˜π‘§) = 𝑔 β†’ ((π½β€˜π‘§) ∈ (𝐢 βˆ– {𝑄}) ↔ 𝑔 ∈ (𝐢 βˆ– {𝑄})))
5452, 53syl5ibcom 244 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((π½β€˜π‘§) = 𝑔 β†’ 𝑔 ∈ (𝐢 βˆ– {𝑄})))
5554rexlimdva 3147 . . . . 5 (πœ‘ β†’ (βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔 β†’ 𝑔 ∈ (𝐢 βˆ– {𝑄})))
56 eldifsn 4783 . . . . . . . 8 (𝑔 ∈ (𝐢 βˆ– {𝑄}) ↔ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄))
57 simprl 768 . . . . . . . . 9 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ 𝑔 ∈ 𝐢)
5845adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑔 ∈ 𝐢) β†’ π‘ˆ ∈ LMod)
5921lcfl1lem 40865 . . . . . . . . . . . . . . . 16 (𝑔 ∈ 𝐢 ↔ (𝑔 ∈ 𝐹 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘”))) = (πΏβ€˜π‘”)))
6059simplbi 497 . . . . . . . . . . . . . . 15 (𝑔 ∈ 𝐢 β†’ 𝑔 ∈ 𝐹)
6160adantl 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑔 ∈ 𝐢) β†’ 𝑔 ∈ 𝐹)
621, 17, 18, 19, 20, 58, 61lkr0f2 38534 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑔 ∈ 𝐢) β†’ ((πΏβ€˜π‘”) = 𝑉 ↔ 𝑔 = 𝑄))
6362necon3bid 2977 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑔 ∈ 𝐢) β†’ ((πΏβ€˜π‘”) β‰  𝑉 ↔ 𝑔 β‰  𝑄))
6463biimprd 247 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑔 ∈ 𝐢) β†’ (𝑔 β‰  𝑄 β†’ (πΏβ€˜π‘”) β‰  𝑉))
6564impr 454 . . . . . . . . . 10 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ (πΏβ€˜π‘”) β‰  𝑉)
6665neneqd 2937 . . . . . . . . 9 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ Β¬ (πΏβ€˜π‘”) = 𝑉)
6722adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
6860adantr 480 . . . . . . . . . . . . . 14 ((𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄) β†’ 𝑔 ∈ 𝐹)
6968adantl 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ 𝑔 ∈ 𝐹)
709, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 67, 69lcfl6 40874 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ (𝑔 ∈ 𝐢 ↔ ((πΏβ€˜π‘”) = 𝑉 ∨ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))))
7170biimpa 476 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) ∧ 𝑔 ∈ 𝐢) β†’ ((πΏβ€˜π‘”) = 𝑉 ∨ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
7271ord 861 . . . . . . . . . 10 (((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) ∧ 𝑔 ∈ 𝐢) β†’ (Β¬ (πΏβ€˜π‘”) = 𝑉 β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
73723impia 1114 . . . . . . . . 9 (((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) ∧ 𝑔 ∈ 𝐢 ∧ Β¬ (πΏβ€˜π‘”) = 𝑉) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
7457, 66, 73mpd3an23 1459 . . . . . . . 8 ((πœ‘ ∧ (𝑔 ∈ 𝐢 ∧ 𝑔 β‰  𝑄)) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
7556, 74sylan2b 593 . . . . . . 7 ((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
76 eqcom 2731 . . . . . . . . 9 ((π½β€˜π‘§) = 𝑔 ↔ 𝑔 = (π½β€˜π‘§))
7722ad2antrr 723 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
78 simpr 484 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ 𝑧 ∈ (𝑉 βˆ– { 0 }))
799, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 77, 78lcfrlem8 40923 . . . . . . . . . 10 (((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (π½β€˜π‘§) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧)))))
8079eqeq2d 2735 . . . . . . . . 9 (((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ (𝑔 = (π½β€˜π‘§) ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
8176, 80bitrid 283 . . . . . . . 8 (((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) ∧ 𝑧 ∈ (𝑉 βˆ– { 0 })) β†’ ((π½β€˜π‘§) = 𝑔 ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
8281rexbidva 3168 . . . . . . 7 ((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) β†’ (βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔 ↔ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑧})𝑣 = (𝑀 + (π‘˜ Β· 𝑧))))))
8375, 82mpbird 257 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (𝐢 βˆ– {𝑄})) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔)
8483ex 412 . . . . 5 (πœ‘ β†’ (𝑔 ∈ (𝐢 βˆ– {𝑄}) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔))
8555, 84impbid 211 . . . 4 (πœ‘ β†’ (βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })(π½β€˜π‘§) = 𝑔 ↔ 𝑔 ∈ (𝐢 βˆ– {𝑄})))
868, 85bitrd 279 . . 3 (πœ‘ β†’ (𝑔 ∈ ran 𝐽 ↔ 𝑔 ∈ (𝐢 βˆ– {𝑄})))
8786eqrdv 2722 . 2 (πœ‘ β†’ ran 𝐽 = (𝐢 βˆ– {𝑄}))
8822ad2antrr 723 . . . . 5 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
89 eqid 2724 . . . . 5 (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑑})𝑣 = (𝑀 + (π‘˜ Β· 𝑑)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑑})𝑣 = (𝑀 + (π‘˜ Β· 𝑑))))
90 eqid 2724 . . . . 5 (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑒})𝑣 = (𝑀 + (π‘˜ Β· 𝑒)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑒})𝑣 = (𝑀 + (π‘˜ Β· 𝑒))))
91 simplrl 774 . . . . 5 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ 𝑑 ∈ (𝑉 βˆ– { 0 }))
92 simplrr 775 . . . . 5 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ 𝑒 ∈ (𝑉 βˆ– { 0 }))
93 simpr 484 . . . . . 6 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ (π½β€˜π‘‘) = (π½β€˜π‘’))
949, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 91lcfrlem8 40923 . . . . . 6 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ (π½β€˜π‘‘) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑑})𝑣 = (𝑀 + (π‘˜ Β· 𝑑)))))
959, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 92lcfrlem8 40923 . . . . . 6 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ (π½β€˜π‘’) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑒})𝑣 = (𝑀 + (π‘˜ Β· 𝑒)))))
9693, 94, 953eqtr3d 2772 . . . . 5 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑑})𝑣 = (𝑀 + (π‘˜ Β· 𝑑)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑒})𝑣 = (𝑀 + (π‘˜ Β· 𝑒)))))
979, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 88, 89, 90, 91, 92, 96lcfl7lem 40873 . . . 4 (((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) ∧ (π½β€˜π‘‘) = (π½β€˜π‘’)) β†’ 𝑑 = 𝑒)
9897ex 412 . . 3 ((πœ‘ ∧ (𝑑 ∈ (𝑉 βˆ– { 0 }) ∧ 𝑒 ∈ (𝑉 βˆ– { 0 }))) β†’ ((π½β€˜π‘‘) = (π½β€˜π‘’) β†’ 𝑑 = 𝑒))
9998ralrimivva 3192 . 2 (πœ‘ β†’ βˆ€π‘‘ ∈ (𝑉 βˆ– { 0 })βˆ€π‘’ ∈ (𝑉 βˆ– { 0 })((π½β€˜π‘‘) = (π½β€˜π‘’) β†’ 𝑑 = 𝑒))
100 dff1o6 7266 . 2 (𝐽:(𝑉 βˆ– { 0 })–1-1-ontoβ†’(𝐢 βˆ– {𝑄}) ↔ (𝐽 Fn (𝑉 βˆ– { 0 }) ∧ ran 𝐽 = (𝐢 βˆ– {𝑄}) ∧ βˆ€π‘‘ ∈ (𝑉 βˆ– { 0 })βˆ€π‘’ ∈ (𝑉 βˆ– { 0 })((π½β€˜π‘‘) = (π½β€˜π‘’) β†’ 𝑑 = 𝑒)))
1016, 87, 99, 100syl3anbrc 1340 1 (πœ‘ β†’ 𝐽:(𝑉 βˆ– { 0 })–1-1-ontoβ†’(𝐢 βˆ– {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424   βˆ– cdif 3938  {csn 4621   ↦ cmpt 5222  ran crn 5668   Fn wfn 6529  β€“1-1-ontoβ†’wf1o 6533  β€˜cfv 6534  β„©crio 7357  (class class class)co 7402  Basecbs 17149  +gcplusg 17202  Scalarcsca 17205   ·𝑠 cvsca 17206  0gc0g 17390  LModclmod 20702  LFnlclfn 38430  LKerclk 38458  LDualcld 38496  HLchlt 38723  LHypclh 39358  DVecHcdvh 40452  ocHcoch 40721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-riotaBAD 38326
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-0g 17392  df-proset 18256  df-poset 18274  df-plt 18291  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-clat 18460  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-grp 18862  df-minusg 18863  df-sbg 18864  df-subg 19046  df-cntz 19229  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-drng 20585  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lvec 20947  df-lsatoms 38349  df-lshyp 38350  df-lfl 38431  df-lkr 38459  df-ldual 38497  df-oposet 38549  df-ol 38551  df-oml 38552  df-covers 38639  df-ats 38640  df-atl 38671  df-cvlat 38695  df-hlat 38724  df-llines 38872  df-lplanes 38873  df-lvols 38874  df-lines 38875  df-psubsp 38877  df-pmap 38878  df-padd 39170  df-lhyp 39362  df-laut 39363  df-ldil 39478  df-ltrn 39479  df-trl 39533  df-tgrp 40117  df-tendo 40129  df-edring 40131  df-dveca 40377  df-disoa 40403  df-dvech 40453  df-dib 40513  df-dic 40547  df-dih 40603  df-doch 40722  df-djh 40769
This theorem is referenced by:  lcf1o  40925
  Copyright terms: Public domain W3C validator