Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Structured version   Visualization version   GIF version

Theorem lcfrlem9 41552
Description: Lemma for lcf1o 41553. (This part has undesirable $d's on 𝐽 and 𝜑 that we remove in lcf1o 41553.) TODO: ugly proof; maybe have better subtheorems or abbreviate some 𝑘 expansions with 𝐽𝑧? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcfrlem9 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0 ,𝑣   𝑣,𝑉,𝑥   𝑥, ·   𝑣,𝑘,𝑤,𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤,𝑥, +   𝑘,𝐽,𝑣,𝑤,𝑥   𝐶,𝑘,𝑣,𝑤,𝑥   𝑓,𝐹   𝑓,𝐿,𝑘,𝑣,𝑤,𝑥   ,𝑓,𝑘,𝑣   𝑄,𝑘,𝑣,𝑤,𝑥   𝑅,𝑓,𝑘,𝑣,𝑤   𝑆,𝑘,𝑣,𝑤,𝑥   · ,𝑓,𝑘,𝑣,𝑤   𝑈,𝑘,𝑤,𝑥   𝑓,𝑉,𝑘,𝑤   0 ,𝑘,𝑣,𝑤   𝜑,𝑘,𝑣,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑄(𝑓)   𝑆(𝑓)   𝑈(𝑣,𝑓)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑓)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑓)

Proof of Theorem lcfrlem9
Dummy variables 𝑦 𝑔 𝑡 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6 𝑉 = (Base‘𝑈)
21fvexi 6920 . . . . 5 𝑉 ∈ V
32mptex 7243 . . . 4 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∈ V
4 lcf1o.j . . . 4 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
53, 4fnmpti 6711 . . 3 𝐽 Fn (𝑉 ∖ { 0 })
65a1i 11 . 2 (𝜑𝐽 Fn (𝑉 ∖ { 0 }))
7 fvelrnb 6969 . . . . 5 (𝐽 Fn (𝑉 ∖ { 0 }) → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
86, 7syl 17 . . . 4 (𝜑 → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
9 lcf1o.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
10 lcf1o.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
11 lcf1o.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 lcf1o.a . . . . . . . . 9 + = (+g𝑈)
13 lcf1o.t . . . . . . . . 9 · = ( ·𝑠𝑈)
14 lcf1o.s . . . . . . . . 9 𝑆 = (Scalar‘𝑈)
15 lcf1o.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
16 lcf1o.z . . . . . . . . 9 0 = (0g𝑈)
17 lcf1o.f . . . . . . . . 9 𝐹 = (LFnl‘𝑈)
18 lcf1o.l . . . . . . . . 9 𝐿 = (LKer‘𝑈)
19 lcf1o.d . . . . . . . . 9 𝐷 = (LDual‘𝑈)
20 lcf1o.q . . . . . . . . 9 𝑄 = (0g𝐷)
21 lcf1o.c . . . . . . . . 9 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
22 lcflo.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 }))
259, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 23, 24lcfrlem8 41551 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
26 eqid 2737 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
27 sneq 4636 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → {𝑦} = {𝑧})
2827fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ( ‘{𝑦}) = ( ‘{𝑧}))
29 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑘 · 𝑦) = (𝑘 · 𝑧))
3029oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑘 · 𝑧)))
3130eqeq2d 2748 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑧))))
3228, 31rexeqbidv 3347 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
3332riotabidv 7390 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))
3433mpteq2dv 5244 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
3534rspceeqv 3645 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
3624, 26, 35sylancl 586 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
3736olcd 875 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
389, 10, 11, 1, 16, 12, 13, 17, 14, 15, 26, 23, 24dochflcl 41477 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐹)
399, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 23, 38lcfl6 41502 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ↔ ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))))
4037, 39mpbird 257 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶)
419, 10, 11, 1, 16, 12, 13, 18, 14, 15, 26, 23, 24dochsnkr2cl 41476 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) ∖ { 0 }))
429, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem3 41473 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
439, 10, 11, 1, 16, 17, 18, 23, 38, 41dochsnkrlem1 41471 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘(𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) ≠ 𝑉)
4442, 43eqnetrrd 3009 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉)
459, 11, 22dvhlmod 41112 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LMod)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑈 ∈ LMod)
471, 17, 18, 19, 20, 46, 38lkr0f2 39162 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ↔ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = 𝑄))
4847necon3bid 2985 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉 ↔ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄))
4944, 48mpbid 232 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)
50 eldifsn 4786 . . . . . . . . 9 ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}) ↔ ((𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ∧ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄))
5140, 49, 50sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}))
5225, 51eqeltrd 2841 . . . . . . 7 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) ∈ (𝐶 ∖ {𝑄}))
53 eleq1 2829 . . . . . . 7 ((𝐽𝑧) = 𝑔 → ((𝐽𝑧) ∈ (𝐶 ∖ {𝑄}) ↔ 𝑔 ∈ (𝐶 ∖ {𝑄})))
5452, 53syl5ibcom 245 . . . . . 6 ((𝜑𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
5554rexlimdva 3155 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
56 eldifsn 4786 . . . . . . . 8 (𝑔 ∈ (𝐶 ∖ {𝑄}) ↔ (𝑔𝐶𝑔𝑄))
57 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → 𝑔𝐶)
5845adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑈 ∈ LMod)
5921lcfl1lem 41493 . . . . . . . . . . . . . . . 16 (𝑔𝐶 ↔ (𝑔𝐹 ∧ ( ‘( ‘(𝐿𝑔))) = (𝐿𝑔)))
6059simplbi 497 . . . . . . . . . . . . . . 15 (𝑔𝐶𝑔𝐹)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔𝐹)
621, 17, 18, 19, 20, 58, 61lkr0f2 39162 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → ((𝐿𝑔) = 𝑉𝑔 = 𝑄))
6362necon3bid 2985 . . . . . . . . . . . 12 ((𝜑𝑔𝐶) → ((𝐿𝑔) ≠ 𝑉𝑔𝑄))
6463biimprd 248 . . . . . . . . . . 11 ((𝜑𝑔𝐶) → (𝑔𝑄 → (𝐿𝑔) ≠ 𝑉))
6564impr 454 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝐿𝑔) ≠ 𝑉)
6665neneqd 2945 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → ¬ (𝐿𝑔) = 𝑉)
6722adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6860adantr 480 . . . . . . . . . . . . . 14 ((𝑔𝐶𝑔𝑄) → 𝑔𝐹)
6968adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → 𝑔𝐹)
709, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 21, 67, 69lcfl6 41502 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → (𝑔𝐶 ↔ ((𝐿𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))))
7170biimpa 476 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶) → ((𝐿𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
7271ord 865 . . . . . . . . . 10 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶) → (¬ (𝐿𝑔) = 𝑉 → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
73723impia 1118 . . . . . . . . 9 (((𝜑 ∧ (𝑔𝐶𝑔𝑄)) ∧ 𝑔𝐶 ∧ ¬ (𝐿𝑔) = 𝑉) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
7457, 66, 73mpd3an23 1465 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐶𝑔𝑄)) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
7556, 74sylan2b 594 . . . . . . 7 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
76 eqcom 2744 . . . . . . . . 9 ((𝐽𝑧) = 𝑔𝑔 = (𝐽𝑧))
7722ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
78 simpr 484 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 }))
799, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 77, 78lcfrlem8 41551 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽𝑧) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))
8079eqeq2d 2748 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑔 = (𝐽𝑧) ↔ 𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8176, 80bitrid 283 . . . . . . . 8 (((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽𝑧) = 𝑔𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8281rexbidva 3177 . . . . . . 7 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))
8375, 82mpbird 257 . . . . . 6 ((𝜑𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔)
8483ex 412 . . . . 5 (𝜑 → (𝑔 ∈ (𝐶 ∖ {𝑄}) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔))
8555, 84impbid 212 . . . 4 (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽𝑧) = 𝑔𝑔 ∈ (𝐶 ∖ {𝑄})))
868, 85bitrd 279 . . 3 (𝜑 → (𝑔 ∈ ran 𝐽𝑔 ∈ (𝐶 ∖ {𝑄})))
8786eqrdv 2735 . 2 (𝜑 → ran 𝐽 = (𝐶 ∖ {𝑄}))
8822ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
89 eqid 2737 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡))))
90 eqid 2737 . . . . 5 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))
91 simplrl 777 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑡 ∈ (𝑉 ∖ { 0 }))
92 simplrr 778 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑢 ∈ (𝑉 ∖ { 0 }))
93 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑡) = (𝐽𝑢))
949, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 91lcfrlem8 41551 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑡) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))))
959, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 4, 88, 92lcfrlem8 41551 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝐽𝑢) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))))
9693, 94, 953eqtr3d 2785 . . . . 5 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))))
979, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 88, 89, 90, 91, 92, 96lcfl7lem 41501 . . . 4 (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽𝑡) = (𝐽𝑢)) → 𝑡 = 𝑢)
9897ex 412 . . 3 ((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) → ((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢))
9998ralrimivva 3202 . 2 (𝜑 → ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢))
100 dff1o6 7295 . 2 (𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) ↔ (𝐽 Fn (𝑉 ∖ { 0 }) ∧ ran 𝐽 = (𝐶 ∖ {𝑄}) ∧ ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽𝑡) = (𝐽𝑢) → 𝑡 = 𝑢)))
1016, 87, 99, 100syl3anbrc 1344 1 (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  {csn 4626  cmpt 5225  ran crn 5686   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858  LFnlclfn 39058  LKerclk 39086  LDualcld 39124  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  ocHcoch 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lfl 39059  df-lkr 39087  df-ldual 39125  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397
This theorem is referenced by:  lcf1o  41553
  Copyright terms: Public domain W3C validator