MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodacl Structured version   Visualization version   GIF version

Theorem lmodacl 20134
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodacl.f 𝐹 = (Scalar‘𝑊)
lmodacl.k 𝐾 = (Base‘𝐹)
lmodacl.p + = (+g𝐹)
Assertion
Ref Expression
lmodacl ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem lmodacl
StepHypRef Expression
1 lmodacl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 20132 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodacl.k . . 3 𝐾 = (Base‘𝐹)
4 lmodacl.p . . 3 + = (+g𝐹)
53, 4grpcl 18585 . 2 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
62, 5syl3an1 1162 1 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  Grpcgrp 18577  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ring 19785  df-lmod 20125
This theorem is referenced by:  lmodcom  20169  lss1d  20225  lspsolvlem  20404  lmodvslmhm  31310  imaslmod  31553  lfladdcl  37085  lshpkrlem5  37128  ldualvsdi2  37158  baerlem5blem1  39723  hgmapadd  39908
  Copyright terms: Public domain W3C validator