Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodacl | Structured version Visualization version GIF version |
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodacl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodacl.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodacl.p | ⊢ + = (+g‘𝐹) |
Ref | Expression |
---|---|
lmodacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodacl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodfgrp 20132 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
3 | lmodacl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | lmodacl.p | . . 3 ⊢ + = (+g‘𝐹) | |
5 | 3, 4 | grpcl 18585 | . 2 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
6 | 2, 5 | syl3an1 1162 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 Grpcgrp 18577 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-ring 19785 df-lmod 20125 |
This theorem is referenced by: lmodcom 20169 lss1d 20225 lspsolvlem 20404 lmodvslmhm 31310 imaslmod 31553 lfladdcl 37085 lshpkrlem5 37128 ldualvsdi2 37158 baerlem5blem1 39723 hgmapadd 39908 |
Copyright terms: Public domain | W3C validator |