MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodacl Structured version   Visualization version   GIF version

Theorem lmodacl 20829
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodacl.f 𝐹 = (Scalar‘𝑊)
lmodacl.k 𝐾 = (Base‘𝐹)
lmodacl.p + = (+g𝐹)
Assertion
Ref Expression
lmodacl ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem lmodacl
StepHypRef Expression
1 lmodacl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 20826 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodacl.k . . 3 𝐾 = (Base‘𝐹)
4 lmodacl.p . . 3 + = (+g𝐹)
53, 4grpcl 18924 . 2 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
62, 5syl3an1 1163 1 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274  Grpcgrp 18916  LModclmod 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-ring 20195  df-lmod 20819
This theorem is referenced by:  lmodcom  20865  lss1d  20920  lspsolvlem  21103  lmodvslmhm  33044  imaslmod  33368  lfladdcl  39089  lshpkrlem5  39132  ldualvsdi2  39162  baerlem5blem1  41728  hgmapadd  41913
  Copyright terms: Public domain W3C validator