MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodacl Structured version   Visualization version   GIF version

Theorem lmodacl 20626
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodacl.f 𝐹 = (Scalarβ€˜π‘Š)
lmodacl.k 𝐾 = (Baseβ€˜πΉ)
lmodacl.p + = (+gβ€˜πΉ)
Assertion
Ref Expression
lmodacl ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)

Proof of Theorem lmodacl
StepHypRef Expression
1 lmodacl.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
21lmodfgrp 20623 . 2 (π‘Š ∈ LMod β†’ 𝐹 ∈ Grp)
3 lmodacl.k . . 3 𝐾 = (Baseβ€˜πΉ)
4 lmodacl.p . . 3 + = (+gβ€˜πΉ)
53, 4grpcl 18863 . 2 ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
62, 5syl3an1 1161 1 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  Scalarcsca 17204  Grpcgrp 18855  LModclmod 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-ring 20129  df-lmod 20616
This theorem is referenced by:  lmodcom  20662  lss1d  20718  lspsolvlem  20900  lmodvslmhm  32472  imaslmod  32738  lfladdcl  38244  lshpkrlem5  38287  ldualvsdi2  38317  baerlem5blem1  40883  hgmapadd  41068
  Copyright terms: Public domain W3C validator