MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodacl Structured version   Visualization version   GIF version

Theorem lmodacl 20049
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodacl.f 𝐹 = (Scalar‘𝑊)
lmodacl.k 𝐾 = (Base‘𝐹)
lmodacl.p + = (+g𝐹)
Assertion
Ref Expression
lmodacl ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)

Proof of Theorem lmodacl
StepHypRef Expression
1 lmodacl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 20047 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodacl.k . . 3 𝐾 = (Base‘𝐹)
4 lmodacl.p . . 3 + = (+g𝐹)
53, 4grpcl 18500 . 2 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
62, 5syl3an1 1161 1 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891  Grpcgrp 18492  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  lmodcom  20084  lss1d  20140  lspsolvlem  20319  lmodvslmhm  31212  imaslmod  31455  lfladdcl  37012  lshpkrlem5  37055  ldualvsdi2  37085  baerlem5blem1  39650  hgmapadd  39835
  Copyright terms: Public domain W3C validator