| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodacl | Structured version Visualization version GIF version | ||
| Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodacl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodacl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodacl.p | ⊢ + = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| lmodacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodacl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodfgrp 20775 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 3 | lmodacl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmodacl.p | . . 3 ⊢ + = (+g‘𝐹) | |
| 5 | 3, 4 | grpcl 18873 | . 2 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| 6 | 2, 5 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 Grpcgrp 18865 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lmodcom 20814 lss1d 20869 lspsolvlem 21052 lmodvslmhm 32990 imaslmod 33324 lfladdcl 39064 lshpkrlem5 39107 ldualvsdi2 39137 baerlem5blem1 41703 hgmapadd 41888 |
| Copyright terms: Public domain | W3C validator |