![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodacl | Structured version Visualization version GIF version |
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodacl.f | β’ πΉ = (Scalarβπ) |
lmodacl.k | β’ πΎ = (BaseβπΉ) |
lmodacl.p | β’ + = (+gβπΉ) |
Ref | Expression |
---|---|
lmodacl | β’ ((π β LMod β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodacl.f | . . 3 β’ πΉ = (Scalarβπ) | |
2 | 1 | lmodfgrp 20623 | . 2 β’ (π β LMod β πΉ β Grp) |
3 | lmodacl.k | . . 3 β’ πΎ = (BaseβπΉ) | |
4 | lmodacl.p | . . 3 β’ + = (+gβπΉ) | |
5 | 3, 4 | grpcl 18863 | . 2 β’ ((πΉ β Grp β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
6 | 2, 5 | syl3an1 1161 | 1 β’ ((π β LMod β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 Scalarcsca 17204 Grpcgrp 18855 LModclmod 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-ring 20129 df-lmod 20616 |
This theorem is referenced by: lmodcom 20662 lss1d 20718 lspsolvlem 20900 lmodvslmhm 32472 imaslmod 32738 lfladdcl 38244 lshpkrlem5 38287 ldualvsdi2 38317 baerlem5blem1 40883 hgmapadd 41068 |
Copyright terms: Public domain | W3C validator |