| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodacl | Structured version Visualization version GIF version | ||
| Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodacl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodacl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodacl.p | ⊢ + = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| lmodacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodacl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodfgrp 20804 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 3 | lmodacl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmodacl.p | . . 3 ⊢ + = (+g‘𝐹) | |
| 5 | 3, 4 | grpcl 18856 | . 2 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| 6 | 2, 5 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Scalarcsca 17166 Grpcgrp 18848 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lmodcom 20843 lss1d 20898 lspsolvlem 21081 lmodvslmhm 33037 imaslmod 33325 lfladdcl 39190 lshpkrlem5 39233 ldualvsdi2 39263 baerlem5blem1 41828 hgmapadd 42013 |
| Copyright terms: Public domain | W3C validator |