Proof of Theorem lshpkrlem5
| Step | Hyp | Ref
| Expression |
| 1 | | lshpkrlem.a |
. . 3
⊢ + =
(+g‘𝑊) |
| 2 | | eqid 2737 |
. . 3
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 3 | | eqid 2737 |
. . 3
⊢
(Cntz‘𝑊) =
(Cntz‘𝑊) |
| 4 | | simp11 1204 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑) |
| 5 | | lshpkrlem.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LVec) |
| 7 | | lveclmod 21105 |
. . . . . 6
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LMod) |
| 9 | | eqid 2737 |
. . . . . 6
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 10 | 9 | lsssssubg 20956 |
. . . . 5
⊢ (𝑊 ∈ LMod →
(LSubSp‘𝑊) ⊆
(SubGrp‘𝑊)) |
| 11 | 8, 10 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 12 | | lshpkrlem.h |
. . . . . 6
⊢ 𝐻 = (LSHyp‘𝑊) |
| 13 | 5, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 14 | | lshpkrlem.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| 15 | 9, 12, 13, 14 | lshplss 38982 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
| 16 | 4, 15 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 17 | 11, 16 | sseldd 3984 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 18 | | lshpkrlem.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 19 | 4, 18 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍 ∈ 𝑉) |
| 20 | | lshpkrlem.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
| 21 | | lshpkrlem.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑊) |
| 22 | 20, 9, 21 | lspsncl 20975 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 23 | 8, 19, 22 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 24 | 11, 23 | sseldd 3984 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 25 | | lshpkrlem.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝑊) |
| 26 | | lshpkrlem.e |
. . . . 5
⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 27 | 20, 2, 21, 25, 12, 5, 14, 18, 26 | lshpdisj 38988 |
. . . 4
⊢ (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g‘𝑊)}) |
| 28 | 4, 27 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g‘𝑊)}) |
| 29 | | lmodabl 20907 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| 30 | 8, 29 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ Abel) |
| 31 | 3, 30, 17, 24 | ablcntzd 19875 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍}))) |
| 32 | | simp23r 1296 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧 ∈ 𝑈) |
| 33 | | simp12 1205 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙 ∈ 𝐾) |
| 34 | | simp22 1208 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟 ∈ 𝑈) |
| 35 | | lshpkrlem.d |
. . . . . 6
⊢ 𝐷 = (Scalar‘𝑊) |
| 36 | | lshpkrlem.t |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑊) |
| 37 | | lshpkrlem.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐷) |
| 38 | 35, 36, 37, 9 | lssvscl 20953 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ 𝐾 ∧ 𝑟 ∈ 𝑈)) → (𝑙 · 𝑟) ∈ 𝑈) |
| 39 | 8, 16, 33, 34, 38 | syl22anc 839 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑟) ∈ 𝑈) |
| 40 | | simp23l 1295 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠 ∈ 𝑈) |
| 41 | 1, 9 | lssvacl 20941 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ ((𝑙 · 𝑟) ∈ 𝑈 ∧ 𝑠 ∈ 𝑈)) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈) |
| 42 | 8, 16, 39, 40, 41 | syl22anc 839 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈) |
| 43 | | simp13 1206 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 ∈ 𝑉) |
| 44 | 20, 35, 36, 37 | lmodvscl 20876 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) → (𝑙 · 𝑢) ∈ 𝑉) |
| 45 | 8, 33, 43, 44 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑢) ∈ 𝑉) |
| 46 | | simp21 1207 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 ∈ 𝑉) |
| 47 | 20, 1 | lmodvacl 20873 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) |
| 48 | 8, 45, 46, 47 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) |
| 49 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑊 ∈ LVec) |
| 50 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑈 ∈ 𝐻) |
| 51 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑍 ∈ 𝑉) |
| 52 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) |
| 53 | 26 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 54 | | lshpkrlem.o |
. . . . . 6
⊢ 0 =
(0g‘𝐷) |
| 55 | | lshpkrlem.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
| 56 | 20, 1, 21, 25, 12, 49, 50, 51, 52, 53, 35, 37, 36, 54, 55 | lshpkrlem2 39112 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾) |
| 57 | 4, 48, 56 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾) |
| 58 | 20, 36, 35, 37, 21, 8, 57, 19 | ellspsni 20999 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) ∈ (𝑁‘{𝑍})) |
| 59 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → 𝑊 ∈ LVec) |
| 60 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
| 61 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
| 62 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → 𝑢 ∈ 𝑉) |
| 63 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 64 | 20, 1, 21, 25, 12, 59, 60, 61, 62, 63, 35, 37, 36, 54, 55 | lshpkrlem2 39112 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → (𝐺‘𝑢) ∈ 𝐾) |
| 65 | 4, 43, 64 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘𝑢) ∈ 𝐾) |
| 66 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝐷) = (.r‘𝐷) |
| 67 | 35, 37, 66 | lmodmcl 20871 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑙 ∈ 𝐾 ∧ (𝐺‘𝑢) ∈ 𝐾) → (𝑙(.r‘𝐷)(𝐺‘𝑢)) ∈ 𝐾) |
| 68 | 8, 33, 65, 67 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙(.r‘𝐷)(𝐺‘𝑢)) ∈ 𝐾) |
| 69 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
| 70 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
| 71 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
| 72 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
| 73 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 74 | 20, 1, 21, 25, 12, 69, 70, 71, 72, 73, 35, 37, 36, 54, 55 | lshpkrlem2 39112 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
| 75 | 4, 46, 74 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘𝑣) ∈ 𝐾) |
| 76 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 77 | 35, 37, 76 | lmodacl 20870 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑙(.r‘𝐷)(𝐺‘𝑢)) ∈ 𝐾 ∧ (𝐺‘𝑣) ∈ 𝐾) → ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) ∈ 𝐾) |
| 78 | 8, 68, 75, 77 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) ∈ 𝐾) |
| 79 | 20, 36, 35, 37, 21, 8, 78, 19 | ellspsni 20999 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍) ∈ (𝑁‘{𝑍})) |
| 80 | | simp33 1212 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍))) |
| 81 | | simp1 1137 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉)) |
| 82 | 20, 9 | lssel 20935 |
. . . . . 6
⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑟 ∈ 𝑈) → 𝑟 ∈ 𝑉) |
| 83 | 16, 34, 82 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟 ∈ 𝑉) |
| 84 | 20, 9 | lssel 20935 |
. . . . . 6
⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑠 ∈ 𝑈) → 𝑠 ∈ 𝑉) |
| 85 | 16, 40, 84 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠 ∈ 𝑉) |
| 86 | | simp31 1210 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍))) |
| 87 | | simp32 1211 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍))) |
| 88 | | lshpkrlem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 89 | 20, 1, 21, 25, 12, 5, 14, 18, 88, 26, 35, 37, 36, 54, 55 | lshpkrlem4 39114 |
. . . . 5
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑉 ∧ 𝑠 ∈ 𝑉) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) |
| 90 | 81, 46, 83, 85, 86, 87, 89 | syl132anc 1390 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) |
| 91 | 80, 90 | eqtr3d 2779 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) |
| 92 | 1, 2, 3, 17, 24, 28, 31, 32, 42, 58, 79, 91 | subgdisj2 19710 |
. 2
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍)) |
| 93 | 20, 21, 25, 12, 2, 13, 14, 18, 26 | lshpne0 38987 |
. . . 4
⊢ (𝜑 → 𝑍 ≠ (0g‘𝑊)) |
| 94 | 4, 93 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍 ≠ (0g‘𝑊)) |
| 95 | 20, 36, 35, 37, 2, 6, 57, 78, 19, 94 | lvecvscan2 21114 |
. 2
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍) ↔ (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)))) |
| 96 | 92, 95 | mpbid 232 |
1
⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |