Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdcl Structured version   Visualization version   GIF version

Theorem lfladdcl 37012
Description: Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lfladdcl (𝜑 → (𝐺f + 𝐻) ∈ 𝐹)

Proof of Theorem lfladdcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfladdcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
21adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑊 ∈ LMod)
3 simprl 767 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
4 simprr 769 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
5 lfladdcl.r . . . . 5 𝑅 = (Scalar‘𝑊)
6 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 lfladdcl.p . . . . 5 + = (+g𝑅)
85, 6, 7lmodacl 20049 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
92, 3, 4, 8syl3anc 1369 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
10 lfladdcl.g . . . 4 (𝜑𝐺𝐹)
11 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
12 lfladdcl.f . . . . 5 𝐹 = (LFnl‘𝑊)
135, 6, 11, 12lflf 37004 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
141, 10, 13syl2anc 583 . . 3 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
15 lfladdcl.h . . . 4 (𝜑𝐻𝐹)
165, 6, 11, 12lflf 37004 . . . 4 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
171, 15, 16syl2anc 583 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
18 fvexd 6771 . . 3 (𝜑 → (Base‘𝑊) ∈ V)
19 inidm 4149 . . 3 ((Base‘𝑊) ∩ (Base‘𝑊)) = (Base‘𝑊)
209, 14, 17, 18, 18, 19off 7529 . 2 (𝜑 → (𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅))
211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
22 simpr1 1192 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑅))
23 simpr2 1193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
24 eqid 2738 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
2511, 5, 24, 6lmodvscl 20055 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
2621, 22, 23, 25syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
27 simpr3 1194 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
28 eqid 2738 . . . . . . 7 (+g𝑊) = (+g𝑊)
2911, 28lmodvacl 20052 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)) → ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊))
3021, 26, 27, 29syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊))
3114ffnd 6585 . . . . . 6 (𝜑𝐺 Fn (Base‘𝑊))
3217ffnd 6585 . . . . . 6 (𝜑𝐻 Fn (Base‘𝑊))
33 eqidd 2739 . . . . . 6 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)))
34 eqidd 2739 . . . . . 6 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)))
3531, 32, 18, 18, 19, 33, 34ofval 7522 . . . . 5 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
3630, 35syldan 590 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
37 eqidd 2739 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝑊)) → (𝐺𝑦) = (𝐺𝑦))
38 eqidd 2739 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝑊)) → (𝐻𝑦) = (𝐻𝑦))
3931, 32, 18, 18, 19, 37, 38ofval 7522 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘𝑦) = ((𝐺𝑦) + (𝐻𝑦)))
4023, 39syldan 590 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘𝑦) = ((𝐺𝑦) + (𝐻𝑦)))
4140oveq2d 7271 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) = (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))))
42 eqidd 2739 . . . . . . . 8 ((𝜑𝑧 ∈ (Base‘𝑊)) → (𝐺𝑧) = (𝐺𝑧))
43 eqidd 2739 . . . . . . . 8 ((𝜑𝑧 ∈ (Base‘𝑊)) → (𝐻𝑧) = (𝐻𝑧))
4431, 32, 18, 18, 19, 42, 43ofval 7522 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘𝑧) = ((𝐺𝑧) + (𝐻𝑧)))
4527, 44syldan 590 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘𝑧) = ((𝐺𝑧) + (𝐻𝑧)))
4641, 45oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
4710adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐺𝐹)
485, 7, 11, 28, 12lfladd 37007 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)))
4921, 47, 26, 27, 48syl112anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)))
5015adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐻𝐹)
515, 7, 11, 28, 12lfladd 37007 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ ((𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧)))
5221, 50, 26, 27, 51syl112anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧)))
5349, 52oveq12d 7273 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))))
545lmodring 20046 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
5521, 54syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ Ring)
56 ringcmn 19735 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
5755, 56syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ CMnd)
585, 6, 11, 12lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
5921, 47, 26, 58syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
605, 6, 11, 12lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧 ∈ (Base‘𝑊)) → (𝐺𝑧) ∈ (Base‘𝑅))
6121, 47, 27, 60syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺𝑧) ∈ (Base‘𝑅))
625, 6, 11, 12lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
6321, 50, 26, 62syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
645, 6, 11, 12lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑧 ∈ (Base‘𝑊)) → (𝐻𝑧) ∈ (Base‘𝑅))
6521, 50, 27, 64syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻𝑧) ∈ (Base‘𝑅))
666, 7cmn4 19321 . . . . . . 7 ((𝑅 ∈ CMnd ∧ ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) ∧ ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐻𝑧) ∈ (Base‘𝑅))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
6757, 59, 61, 63, 65, 66syl122anc 1377 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
68 eqid 2738 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
695, 6, 68, 11, 24, 12lflmul 37009 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐺𝑦)))
7021, 47, 22, 23, 69syl112anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐺𝑦)))
715, 6, 68, 11, 24, 12lflmul 37009 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐻𝑦)))
7221, 50, 22, 23, 71syl112anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐻𝑦)))
7370, 72oveq12d 7273 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
745, 6, 11, 12lflcl 37005 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (Base‘𝑊)) → (𝐺𝑦) ∈ (Base‘𝑅))
7521, 47, 23, 74syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺𝑦) ∈ (Base‘𝑅))
765, 6, 11, 12lflcl 37005 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑦 ∈ (Base‘𝑊)) → (𝐻𝑦) ∈ (Base‘𝑅))
7721, 50, 23, 76syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻𝑦) ∈ (Base‘𝑅))
786, 7, 68ringdi 19720 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅) ∧ (𝐻𝑦) ∈ (Base‘𝑅))) → (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
7955, 22, 75, 77, 78syl13anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
8073, 79eqtr4d 2781 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) = (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))))
8180oveq1d 7270 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
8253, 67, 813eqtrd 2782 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
8346, 82eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
8436, 83eqtr4d 2781 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))
8584ralrimivvva 3115 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))
8611, 28, 5, 24, 6, 7, 68, 12islfl 37001 . . 3 (𝑊 ∈ LMod → ((𝐺f + 𝐻) ∈ 𝐹 ↔ ((𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))))
871, 86syl 17 . 2 (𝜑 → ((𝐺f + 𝐻) ∈ 𝐹 ↔ ((𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))))
8820, 85, 87mpbir2and 709 1 (𝜑 → (𝐺f + 𝐻) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  CMndccmn 19301  Ringcrg 19698  LModclmod 20038  LFnlclfn 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lfl 36999
This theorem is referenced by:  ldualvaddcl  37071
  Copyright terms: Public domain W3C validator