Step | Hyp | Ref
| Expression |
1 | | lfladdcl.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑊 ∈ LMod) |
3 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
4 | | simprr 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
5 | | lfladdcl.r |
. . . . 5
⊢ 𝑅 = (Scalar‘𝑊) |
6 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
7 | | lfladdcl.p |
. . . . 5
⊢ + =
(+g‘𝑅) |
8 | 5, 6, 7 | lmodacl 20049 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
9 | 2, 3, 4, 8 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
10 | | lfladdcl.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
11 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
12 | | lfladdcl.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
13 | 5, 6, 11, 12 | lflf 37004 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
14 | 1, 10, 13 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
15 | | lfladdcl.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
16 | 5, 6, 11, 12 | lflf 37004 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
17 | 1, 15, 16 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
18 | | fvexd 6771 |
. . 3
⊢ (𝜑 → (Base‘𝑊) ∈ V) |
19 | | inidm 4149 |
. . 3
⊢
((Base‘𝑊)
∩ (Base‘𝑊)) =
(Base‘𝑊) |
20 | 9, 14, 17, 18, 18, 19 | off 7529 |
. 2
⊢ (𝜑 → (𝐺 ∘f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅)) |
21 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
22 | | simpr1 1192 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑅)) |
23 | | simpr2 1193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
24 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
25 | 11, 5, 24, 6 | lmodvscl 20055 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
26 | 21, 22, 23, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
27 | | simpr3 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑊) = (+g‘𝑊) |
29 | 11, 28 | lmodvacl 20052 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥(
·𝑠 ‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)) → ((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧) ∈ (Base‘𝑊)) |
30 | 21, 26, 27, 29 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧) ∈ (Base‘𝑊)) |
31 | 14 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn (Base‘𝑊)) |
32 | 17 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝐻 Fn (Base‘𝑊)) |
33 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = (𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧))) |
34 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧))) |
35 | 31, 32, 18, 18, 19, 33, 34 | ofval 7522 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧) ∈ (Base‘𝑊)) → ((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)))) |
36 | 30, 35 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)))) |
37 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑊)) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
38 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑊)) → (𝐻‘𝑦) = (𝐻‘𝑦)) |
39 | 31, 32, 18, 18, 19, 37, 38 | ofval 7522 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝐺 ∘f + 𝐻)‘𝑦) = ((𝐺‘𝑦) + (𝐻‘𝑦))) |
40 | 23, 39 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺 ∘f + 𝐻)‘𝑦) = ((𝐺‘𝑦) + (𝐻‘𝑦))) |
41 | 40 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) = (𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦)))) |
42 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
43 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝐻‘𝑧) = (𝐻‘𝑧)) |
44 | 31, 32, 18, 18, 19, 42, 43 | ofval 7522 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → ((𝐺 ∘f + 𝐻)‘𝑧) = ((𝐺‘𝑧) + (𝐻‘𝑧))) |
45 | 27, 44 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺 ∘f + 𝐻)‘𝑧) = ((𝐺‘𝑧) + (𝐻‘𝑧))) |
46 | 41, 45 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧)) = ((𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧)))) |
47 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐺 ∈ 𝐹) |
48 | 5, 7, 11, 28, 12 | lfladd 37007 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐺‘𝑧))) |
49 | 21, 47, 26, 27, 48 | syl112anc 1372 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐺‘𝑧))) |
50 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐻 ∈ 𝐹) |
51 | 5, 7, 11, 28, 12 | lfladd 37007 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ((𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘𝑧))) |
52 | 21, 50, 26, 27, 51 | syl112anc 1372 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘𝑧))) |
53 | 49, 52 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧))) = (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐺‘𝑧)) + ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘𝑧)))) |
54 | 5 | lmodring 20046 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
55 | 21, 54 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ Ring) |
56 | | ringcmn 19735 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
57 | 55, 56 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ CMnd) |
58 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅)) |
59 | 21, 47, 26, 58 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅)) |
60 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝐺‘𝑧) ∈ (Base‘𝑅)) |
61 | 21, 47, 27, 60 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘𝑧) ∈ (Base‘𝑅)) |
62 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅)) |
63 | 21, 50, 26, 62 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅)) |
64 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝐻‘𝑧) ∈ (Base‘𝑅)) |
65 | 21, 50, 27, 64 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘𝑧) ∈ (Base‘𝑅)) |
66 | 6, 7 | cmn4 19321 |
. . . . . . 7
⊢ ((𝑅 ∈ CMnd ∧ ((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐺‘𝑧) ∈ (Base‘𝑅)) ∧ ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐻‘𝑧) ∈ (Base‘𝑅))) → (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐺‘𝑧)) + ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘𝑧))) = (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧)))) |
67 | 57, 59, 61, 63, 65, 66 | syl122anc 1377 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐺‘𝑧)) + ((𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘𝑧))) = (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧)))) |
68 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
69 | 5, 6, 68, 11, 24, 12 | lflmul 37009 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥(.r‘𝑅)(𝐺‘𝑦))) |
70 | 21, 47, 22, 23, 69 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥(.r‘𝑅)(𝐺‘𝑦))) |
71 | 5, 6, 68, 11, 24, 12 | lflmul 37009 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥(.r‘𝑅)(𝐻‘𝑦))) |
72 | 21, 50, 22, 23, 71 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥(.r‘𝑅)(𝐻‘𝑦))) |
73 | 70, 72 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦))) = ((𝑥(.r‘𝑅)(𝐺‘𝑦)) + (𝑥(.r‘𝑅)(𝐻‘𝑦)))) |
74 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ (Base‘𝑊)) → (𝐺‘𝑦) ∈ (Base‘𝑅)) |
75 | 21, 47, 23, 74 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘𝑦) ∈ (Base‘𝑅)) |
76 | 5, 6, 11, 12 | lflcl 37005 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑦 ∈ (Base‘𝑊)) → (𝐻‘𝑦) ∈ (Base‘𝑅)) |
77 | 21, 50, 23, 76 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘𝑦) ∈ (Base‘𝑅)) |
78 | 6, 7, 68 | ringdi 19720 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ (𝐺‘𝑦) ∈ (Base‘𝑅) ∧ (𝐻‘𝑦) ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦))) = ((𝑥(.r‘𝑅)(𝐺‘𝑦)) + (𝑥(.r‘𝑅)(𝐻‘𝑦)))) |
79 | 55, 22, 75, 77, 78 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦))) = ((𝑥(.r‘𝑅)(𝐺‘𝑦)) + (𝑥(.r‘𝑅)(𝐻‘𝑦)))) |
80 | 73, 79 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦))) = (𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦)))) |
81 | 80 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠
‘𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠
‘𝑊)𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧))) = ((𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧)))) |
82 | 53, 67, 81 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧))) = ((𝑥(.r‘𝑅)((𝐺‘𝑦) + (𝐻‘𝑦))) + ((𝐺‘𝑧) + (𝐻‘𝑧)))) |
83 | 46, 82 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧)) = ((𝐺‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)))) |
84 | 36, 83 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧))) |
85 | 84 | ralrimivvva 3115 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧))) |
86 | 11, 28, 5, 24, 6, 7,
68, 12 | islfl 37001 |
. . 3
⊢ (𝑊 ∈ LMod → ((𝐺 ∘f + 𝐻) ∈ 𝐹 ↔ ((𝐺 ∘f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧))))) |
87 | 1, 86 | syl 17 |
. 2
⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∈ 𝐹 ↔ ((𝐺 ∘f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺 ∘f + 𝐻)‘((𝑥( ·𝑠
‘𝑊)𝑦)(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑅)((𝐺 ∘f + 𝐻)‘𝑦)) + ((𝐺 ∘f + 𝐻)‘𝑧))))) |
88 | 20, 85, 87 | mpbir2and 709 |
1
⊢ (𝜑 → (𝐺 ∘f + 𝐻) ∈ 𝐹) |