Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdcl Structured version   Visualization version   GIF version

Theorem lfladdcl 39060
Description: Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lfladdcl (𝜑 → (𝐺f + 𝐻) ∈ 𝐹)

Proof of Theorem lfladdcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfladdcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
21adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑊 ∈ LMod)
3 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
4 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
5 lfladdcl.r . . . . 5 𝑅 = (Scalar‘𝑊)
6 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 lfladdcl.p . . . . 5 + = (+g𝑅)
85, 6, 7lmodacl 20775 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
92, 3, 4, 8syl3anc 1373 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
10 lfladdcl.g . . . 4 (𝜑𝐺𝐹)
11 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
12 lfladdcl.f . . . . 5 𝐹 = (LFnl‘𝑊)
135, 6, 11, 12lflf 39052 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
141, 10, 13syl2anc 584 . . 3 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
15 lfladdcl.h . . . 4 (𝜑𝐻𝐹)
165, 6, 11, 12lflf 39052 . . . 4 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
171, 15, 16syl2anc 584 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
18 fvexd 6837 . . 3 (𝜑 → (Base‘𝑊) ∈ V)
19 inidm 4178 . . 3 ((Base‘𝑊) ∩ (Base‘𝑊)) = (Base‘𝑊)
209, 14, 17, 18, 18, 19off 7631 . 2 (𝜑 → (𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅))
211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
22 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑅))
23 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
24 eqid 2729 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
2511, 5, 24, 6lmodvscl 20781 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
2621, 22, 23, 25syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
27 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
28 eqid 2729 . . . . . . 7 (+g𝑊) = (+g𝑊)
2911, 28lmodvacl 20778 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)) → ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊))
3021, 26, 27, 29syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊))
3114ffnd 6653 . . . . . 6 (𝜑𝐺 Fn (Base‘𝑊))
3217ffnd 6653 . . . . . 6 (𝜑𝐻 Fn (Base‘𝑊))
33 eqidd 2730 . . . . . 6 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)))
34 eqidd 2730 . . . . . 6 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)))
3531, 32, 18, 18, 19, 33, 34ofval 7624 . . . . 5 ((𝜑 ∧ ((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
3630, 35syldan 591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
37 eqidd 2730 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝑊)) → (𝐺𝑦) = (𝐺𝑦))
38 eqidd 2730 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝑊)) → (𝐻𝑦) = (𝐻𝑦))
3931, 32, 18, 18, 19, 37, 38ofval 7624 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘𝑦) = ((𝐺𝑦) + (𝐻𝑦)))
4023, 39syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘𝑦) = ((𝐺𝑦) + (𝐻𝑦)))
4140oveq2d 7365 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) = (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))))
42 eqidd 2730 . . . . . . . 8 ((𝜑𝑧 ∈ (Base‘𝑊)) → (𝐺𝑧) = (𝐺𝑧))
43 eqidd 2730 . . . . . . . 8 ((𝜑𝑧 ∈ (Base‘𝑊)) → (𝐻𝑧) = (𝐻𝑧))
4431, 32, 18, 18, 19, 42, 43ofval 7624 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝑊)) → ((𝐺f + 𝐻)‘𝑧) = ((𝐺𝑧) + (𝐻𝑧)))
4527, 44syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘𝑧) = ((𝐺𝑧) + (𝐻𝑧)))
4641, 45oveq12d 7367 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
4710adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐺𝐹)
485, 7, 11, 28, 12lfladd 39055 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)))
4921, 47, 26, 27, 48syl112anc 1376 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)))
5015adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝐻𝐹)
515, 7, 11, 28, 12lfladd 39055 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ ((𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧)))
5221, 50, 26, 27, 51syl112anc 1376 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧)))
5349, 52oveq12d 7367 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))))
545lmodring 20771 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
5521, 54syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ Ring)
56 ringcmn 20167 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
5755, 56syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑅 ∈ CMnd)
585, 6, 11, 12lflcl 39053 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
5921, 47, 26, 58syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
605, 6, 11, 12lflcl 39053 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧 ∈ (Base‘𝑊)) → (𝐺𝑧) ∈ (Base‘𝑅))
6121, 47, 27, 60syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺𝑧) ∈ (Base‘𝑅))
625, 6, 11, 12lflcl 39053 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊)) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
6321, 50, 26, 62syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅))
645, 6, 11, 12lflcl 39053 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑧 ∈ (Base‘𝑊)) → (𝐻𝑧) ∈ (Base‘𝑅))
6521, 50, 27, 64syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻𝑧) ∈ (Base‘𝑅))
666, 7cmn4 19680 . . . . . . 7 ((𝑅 ∈ CMnd ∧ ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) ∧ ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) ∈ (Base‘𝑅) ∧ (𝐻𝑧) ∈ (Base‘𝑅))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
6757, 59, 61, 63, 65, 66syl122anc 1381 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐺𝑧)) + ((𝐻‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻𝑧))) = (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
68 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
695, 6, 68, 11, 24, 12lflmul 39057 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐺𝑦)))
7021, 47, 22, 23, 69syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐺𝑦)))
715, 6, 68, 11, 24, 12lflmul 39057 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐻𝑦)))
7221, 50, 22, 23, 71syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥(.r𝑅)(𝐻𝑦)))
7370, 72oveq12d 7367 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
745, 6, 11, 12lflcl 39053 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (Base‘𝑊)) → (𝐺𝑦) ∈ (Base‘𝑅))
7521, 47, 23, 74syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐺𝑦) ∈ (Base‘𝑅))
765, 6, 11, 12lflcl 39053 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑦 ∈ (Base‘𝑊)) → (𝐻𝑦) ∈ (Base‘𝑅))
7721, 50, 23, 76syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝐻𝑦) ∈ (Base‘𝑅))
786, 7, 68ringdi 20146 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅) ∧ (𝐻𝑦) ∈ (Base‘𝑅))) → (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
7955, 22, 75, 77, 78syl13anc 1374 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) = ((𝑥(.r𝑅)(𝐺𝑦)) + (𝑥(.r𝑅)(𝐻𝑦))))
8073, 79eqtr4d 2767 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) = (𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))))
8180oveq1d 7364 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝐺‘(𝑥( ·𝑠𝑊)𝑦)) + (𝐻‘(𝑥( ·𝑠𝑊)𝑦))) + ((𝐺𝑧) + (𝐻𝑧))) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
8253, 67, 813eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑥(.r𝑅)((𝐺𝑦) + (𝐻𝑦))) + ((𝐺𝑧) + (𝐻𝑧))))
8346, 82eqtr4d 2767 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)) = ((𝐺‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) + (𝐻‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
8436, 83eqtr4d 2767 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))
8584ralrimivvva 3175 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))
8611, 28, 5, 24, 6, 7, 68, 12islfl 39049 . . 3 (𝑊 ∈ LMod → ((𝐺f + 𝐻) ∈ 𝐹 ↔ ((𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))))
871, 86syl 17 . 2 (𝜑 → ((𝐺f + 𝐻) ∈ 𝐹 ↔ ((𝐺f + 𝐻):(Base‘𝑊)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (Base‘𝑊)((𝐺f + 𝐻)‘((𝑥( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑥(.r𝑅)((𝐺f + 𝐻)‘𝑦)) + ((𝐺f + 𝐻)‘𝑧)))))
8820, 85, 87mpbir2and 713 1 (𝜑 → (𝐺f + 𝐻) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  CMndccmn 19659  Ringcrg 20118  LModclmod 20763  LFnlclfn 39046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lfl 39047
This theorem is referenced by:  ldualvaddcl  39119
  Copyright terms: Public domain W3C validator