Step | Hyp | Ref
| Expression |
1 | | lfladdcl.w |
. . . . 5
β’ (π β π β LMod) |
2 | 1 | adantr 482 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π β LMod) |
3 | | simprl 770 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π₯ β (Baseβπ
)) |
4 | | simprr 772 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β π¦ β (Baseβπ
)) |
5 | | lfladdcl.r |
. . . . 5
β’ π
= (Scalarβπ) |
6 | | eqid 2733 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
7 | | lfladdcl.p |
. . . . 5
β’ + =
(+gβπ
) |
8 | 5, 6, 7 | lmodacl 20348 |
. . . 4
β’ ((π β LMod β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β (π₯ + π¦) β (Baseβπ
)) |
9 | 2, 3, 4, 8 | syl3anc 1372 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
))) β (π₯ + π¦) β (Baseβπ
)) |
10 | | lfladdcl.g |
. . . 4
β’ (π β πΊ β πΉ) |
11 | | eqid 2733 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
12 | | lfladdcl.f |
. . . . 5
β’ πΉ = (LFnlβπ) |
13 | 5, 6, 11, 12 | lflf 37571 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ) β πΊ:(Baseβπ)βΆ(Baseβπ
)) |
14 | 1, 10, 13 | syl2anc 585 |
. . 3
β’ (π β πΊ:(Baseβπ)βΆ(Baseβπ
)) |
15 | | lfladdcl.h |
. . . 4
β’ (π β π» β πΉ) |
16 | 5, 6, 11, 12 | lflf 37571 |
. . . 4
β’ ((π β LMod β§ π» β πΉ) β π»:(Baseβπ)βΆ(Baseβπ
)) |
17 | 1, 15, 16 | syl2anc 585 |
. . 3
β’ (π β π»:(Baseβπ)βΆ(Baseβπ
)) |
18 | | fvexd 6858 |
. . 3
β’ (π β (Baseβπ) β V) |
19 | | inidm 4179 |
. . 3
β’
((Baseβπ)
β© (Baseβπ)) =
(Baseβπ) |
20 | 9, 14, 17, 18, 18, 19 | off 7636 |
. 2
β’ (π β (πΊ βf + π»):(Baseβπ)βΆ(Baseβπ
)) |
21 | 1 | adantr 482 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π β LMod) |
22 | | simpr1 1195 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ
)) |
23 | | simpr2 1196 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ)) |
24 | | eqid 2733 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
25 | 11, 5, 24, 6 | lmodvscl 20354 |
. . . . . . 7
β’ ((π β LMod β§ π₯ β (Baseβπ
) β§ π¦ β (Baseβπ)) β (π₯( Β·π
βπ)π¦) β (Baseβπ)) |
26 | 21, 22, 23, 25 | syl3anc 1372 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯( Β·π
βπ)π¦) β (Baseβπ)) |
27 | | simpr3 1197 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
28 | | eqid 2733 |
. . . . . . 7
β’
(+gβπ) = (+gβπ) |
29 | 11, 28 | lmodvacl 20351 |
. . . . . 6
β’ ((π β LMod β§ (π₯(
Β·π βπ)π¦) β (Baseβπ) β§ π§ β (Baseβπ)) β ((π₯( Β·π
βπ)π¦)(+gβπ)π§) β (Baseβπ)) |
30 | 21, 26, 27, 29 | syl3anc 1372 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π¦)(+gβπ)π§) β (Baseβπ)) |
31 | 14 | ffnd 6670 |
. . . . . 6
β’ (π β πΊ Fn (Baseβπ)) |
32 | 17 | ffnd 6670 |
. . . . . 6
β’ (π β π» Fn (Baseβπ)) |
33 | | eqidd 2734 |
. . . . . 6
β’ ((π β§ ((π₯( Β·π
βπ)π¦)(+gβπ)π§) β (Baseβπ)) β (πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = (πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§))) |
34 | | eqidd 2734 |
. . . . . 6
β’ ((π β§ ((π₯( Β·π
βπ)π¦)(+gβπ)π§) β (Baseβπ)) β (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§))) |
35 | 31, 32, 18, 18, 19, 33, 34 | ofval 7629 |
. . . . 5
β’ ((π β§ ((π₯( Β·π
βπ)π¦)(+gβπ)π§) β (Baseβπ)) β ((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) + (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)))) |
36 | 30, 35 | syldan 592 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) + (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)))) |
37 | | eqidd 2734 |
. . . . . . . . 9
β’ ((π β§ π¦ β (Baseβπ)) β (πΊβπ¦) = (πΊβπ¦)) |
38 | | eqidd 2734 |
. . . . . . . . 9
β’ ((π β§ π¦ β (Baseβπ)) β (π»βπ¦) = (π»βπ¦)) |
39 | 31, 32, 18, 18, 19, 37, 38 | ofval 7629 |
. . . . . . . 8
β’ ((π β§ π¦ β (Baseβπ)) β ((πΊ βf + π»)βπ¦) = ((πΊβπ¦) + (π»βπ¦))) |
40 | 23, 39 | syldan 592 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊ βf + π»)βπ¦) = ((πΊβπ¦) + (π»βπ¦))) |
41 | 40 | oveq2d 7374 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ
)((πΊ βf + π»)βπ¦)) = (π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦)))) |
42 | | eqidd 2734 |
. . . . . . . 8
β’ ((π β§ π§ β (Baseβπ)) β (πΊβπ§) = (πΊβπ§)) |
43 | | eqidd 2734 |
. . . . . . . 8
β’ ((π β§ π§ β (Baseβπ)) β (π»βπ§) = (π»βπ§)) |
44 | 31, 32, 18, 18, 19, 42, 43 | ofval 7629 |
. . . . . . 7
β’ ((π β§ π§ β (Baseβπ)) β ((πΊ βf + π»)βπ§) = ((πΊβπ§) + (π»βπ§))) |
45 | 27, 44 | syldan 592 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊ βf + π»)βπ§) = ((πΊβπ§) + (π»βπ§))) |
46 | 41, 45 | oveq12d 7376 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§)) = ((π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦))) + ((πΊβπ§) + (π»βπ§)))) |
47 | 10 | adantr 482 |
. . . . . . . 8
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β πΊ β πΉ) |
48 | 5, 7, 11, 28, 12 | lfladd 37574 |
. . . . . . . 8
β’ ((π β LMod β§ πΊ β πΉ β§ ((π₯( Β·π
βπ)π¦) β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((πΊβ(π₯( Β·π
βπ)π¦)) + (πΊβπ§))) |
49 | 21, 47, 26, 27, 48 | syl112anc 1375 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((πΊβ(π₯( Β·π
βπ)π¦)) + (πΊβπ§))) |
50 | 15 | adantr 482 |
. . . . . . . 8
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π» β πΉ) |
51 | 5, 7, 11, 28, 12 | lfladd 37574 |
. . . . . . . 8
β’ ((π β LMod β§ π» β πΉ β§ ((π₯( Β·π
βπ)π¦) β (Baseβπ) β§ π§ β (Baseβπ))) β (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π»β(π₯( Β·π
βπ)π¦)) + (π»βπ§))) |
52 | 21, 50, 26, 27, 51 | syl112anc 1375 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π»β(π₯( Β·π
βπ)π¦)) + (π»βπ§))) |
53 | 49, 52 | oveq12d 7376 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) + (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§))) = (((πΊβ(π₯( Β·π
βπ)π¦)) + (πΊβπ§)) + ((π»β(π₯( Β·π
βπ)π¦)) + (π»βπ§)))) |
54 | 5 | lmodring 20344 |
. . . . . . . . 9
β’ (π β LMod β π
β Ring) |
55 | 21, 54 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
β Ring) |
56 | | ringcmn 20008 |
. . . . . . . 8
β’ (π
β Ring β π
β CMnd) |
57 | 55, 56 | syl 17 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π
β CMnd) |
58 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . 8
β’ ((π β LMod β§ πΊ β πΉ β§ (π₯( Β·π
βπ)π¦) β (Baseβπ)) β (πΊβ(π₯( Β·π
βπ)π¦)) β (Baseβπ
)) |
59 | 21, 47, 26, 58 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβ(π₯( Β·π
βπ)π¦)) β (Baseβπ
)) |
60 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . 8
β’ ((π β LMod β§ πΊ β πΉ β§ π§ β (Baseβπ)) β (πΊβπ§) β (Baseβπ
)) |
61 | 21, 47, 27, 60 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβπ§) β (Baseβπ
)) |
62 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . 8
β’ ((π β LMod β§ π» β πΉ β§ (π₯( Β·π
βπ)π¦) β (Baseβπ)) β (π»β(π₯( Β·π
βπ)π¦)) β (Baseβπ
)) |
63 | 21, 50, 26, 62 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π»β(π₯( Β·π
βπ)π¦)) β (Baseβπ
)) |
64 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . 8
β’ ((π β LMod β§ π» β πΉ β§ π§ β (Baseβπ)) β (π»βπ§) β (Baseβπ
)) |
65 | 21, 50, 27, 64 | syl3anc 1372 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π»βπ§) β (Baseβπ
)) |
66 | 6, 7 | cmn4 19588 |
. . . . . . 7
β’ ((π
β CMnd β§ ((πΊβ(π₯( Β·π
βπ)π¦)) β (Baseβπ
) β§ (πΊβπ§) β (Baseβπ
)) β§ ((π»β(π₯( Β·π
βπ)π¦)) β (Baseβπ
) β§ (π»βπ§) β (Baseβπ
))) β (((πΊβ(π₯( Β·π
βπ)π¦)) + (πΊβπ§)) + ((π»β(π₯( Β·π
βπ)π¦)) + (π»βπ§))) = (((πΊβ(π₯( Β·π
βπ)π¦)) + (π»β(π₯( Β·π
βπ)π¦))) + ((πΊβπ§) + (π»βπ§)))) |
67 | 57, 59, 61, 63, 65, 66 | syl122anc 1380 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (((πΊβ(π₯( Β·π
βπ)π¦)) + (πΊβπ§)) + ((π»β(π₯( Β·π
βπ)π¦)) + (π»βπ§))) = (((πΊβ(π₯( Β·π
βπ)π¦)) + (π»β(π₯( Β·π
βπ)π¦))) + ((πΊβπ§) + (π»βπ§)))) |
68 | | eqid 2733 |
. . . . . . . . . . 11
β’
(.rβπ
) = (.rβπ
) |
69 | 5, 6, 68, 11, 24, 12 | lflmul 37576 |
. . . . . . . . . 10
β’ ((π β LMod β§ πΊ β πΉ β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ))) β (πΊβ(π₯( Β·π
βπ)π¦)) = (π₯(.rβπ
)(πΊβπ¦))) |
70 | 21, 47, 22, 23, 69 | syl112anc 1375 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβ(π₯( Β·π
βπ)π¦)) = (π₯(.rβπ
)(πΊβπ¦))) |
71 | 5, 6, 68, 11, 24, 12 | lflmul 37576 |
. . . . . . . . . 10
β’ ((π β LMod β§ π» β πΉ β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ))) β (π»β(π₯( Β·π
βπ)π¦)) = (π₯(.rβπ
)(π»βπ¦))) |
72 | 21, 50, 22, 23, 71 | syl112anc 1375 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π»β(π₯( Β·π
βπ)π¦)) = (π₯(.rβπ
)(π»βπ¦))) |
73 | 70, 72 | oveq12d 7376 |
. . . . . . . 8
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊβ(π₯( Β·π
βπ)π¦)) + (π»β(π₯( Β·π
βπ)π¦))) = ((π₯(.rβπ
)(πΊβπ¦)) + (π₯(.rβπ
)(π»βπ¦)))) |
74 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . . . 10
β’ ((π β LMod β§ πΊ β πΉ β§ π¦ β (Baseβπ)) β (πΊβπ¦) β (Baseβπ
)) |
75 | 21, 47, 23, 74 | syl3anc 1372 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (πΊβπ¦) β (Baseβπ
)) |
76 | 5, 6, 11, 12 | lflcl 37572 |
. . . . . . . . . 10
β’ ((π β LMod β§ π» β πΉ β§ π¦ β (Baseβπ)) β (π»βπ¦) β (Baseβπ
)) |
77 | 21, 50, 23, 76 | syl3anc 1372 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π»βπ¦) β (Baseβπ
)) |
78 | 6, 7, 68 | ringdi 19992 |
. . . . . . . . 9
β’ ((π
β Ring β§ (π₯ β (Baseβπ
) β§ (πΊβπ¦) β (Baseβπ
) β§ (π»βπ¦) β (Baseβπ
))) β (π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦))) = ((π₯(.rβπ
)(πΊβπ¦)) + (π₯(.rβπ
)(π»βπ¦)))) |
79 | 55, 22, 75, 77, 78 | syl13anc 1373 |
. . . . . . . 8
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦))) = ((π₯(.rβπ
)(πΊβπ¦)) + (π₯(.rβπ
)(π»βπ¦)))) |
80 | 73, 79 | eqtr4d 2776 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊβ(π₯( Β·π
βπ)π¦)) + (π»β(π₯( Β·π
βπ)π¦))) = (π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦)))) |
81 | 80 | oveq1d 7373 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (((πΊβ(π₯( Β·π
βπ)π¦)) + (π»β(π₯( Β·π
βπ)π¦))) + ((πΊβπ§) + (π»βπ§))) = ((π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦))) + ((πΊβπ§) + (π»βπ§)))) |
82 | 53, 67, 81 | 3eqtrd 2777 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) + (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§))) = ((π₯(.rβπ
)((πΊβπ¦) + (π»βπ¦))) + ((πΊβπ§) + (π»βπ§)))) |
83 | 46, 82 | eqtr4d 2776 |
. . . 4
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§)) = ((πΊβ((π₯( Β·π
βπ)π¦)(+gβπ)π§)) + (π»β((π₯( Β·π
βπ)π¦)(+gβπ)π§)))) |
84 | 36, 83 | eqtr4d 2776 |
. . 3
β’ ((π β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§))) |
85 | 84 | ralrimivvva 3197 |
. 2
β’ (π β βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ)βπ§ β (Baseβπ)((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§))) |
86 | 11, 28, 5, 24, 6, 7,
68, 12 | islfl 37568 |
. . 3
β’ (π β LMod β ((πΊ βf + π») β πΉ β ((πΊ βf + π»):(Baseβπ)βΆ(Baseβπ
) β§ βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ)βπ§ β (Baseβπ)((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§))))) |
87 | 1, 86 | syl 17 |
. 2
β’ (π β ((πΊ βf + π») β πΉ β ((πΊ βf + π»):(Baseβπ)βΆ(Baseβπ
) β§ βπ₯ β (Baseβπ
)βπ¦ β (Baseβπ)βπ§ β (Baseβπ)((πΊ βf + π»)β((π₯( Β·π
βπ)π¦)(+gβπ)π§)) = ((π₯(.rβπ
)((πΊ βf + π»)βπ¦)) + ((πΊ βf + π»)βπ§))))) |
88 | 20, 85, 87 | mpbir2and 712 |
1
β’ (π β (πΊ βf + π») β πΉ) |