Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvslmhm Structured version   Visualization version   GIF version

Theorem lmodvslmhm 31001
Description: Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.)
Hypotheses
Ref Expression
lmodvslmhm.v 𝑉 = (Base‘𝑊)
lmodvslmhm.f 𝐹 = (Scalar‘𝑊)
lmodvslmhm.s · = ( ·𝑠𝑊)
lmodvslmhm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvslmhm ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊))
Distinct variable groups:   𝑥, ·   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌

Proof of Theorem lmodvslmhm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvslmhm.k . 2 𝐾 = (Base‘𝐹)
2 lmodvslmhm.v . 2 𝑉 = (Base‘𝑊)
3 eqid 2734 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2734 . 2 (+g𝑊) = (+g𝑊)
5 lmodvslmhm.f . . . 4 𝐹 = (Scalar‘𝑊)
65lmodfgrp 19880 . . 3 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
76adantr 484 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝐹 ∈ Grp)
8 lmodgrp 19878 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
98adantr 484 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑊 ∈ Grp)
10 lmodvslmhm.s . . . . . 6 · = ( ·𝑠𝑊)
112, 5, 10, 1lmodvscl 19888 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑌𝑉) → (𝑥 · 𝑌) ∈ 𝑉)
12113expa 1120 . . . 4 (((𝑊 ∈ LMod ∧ 𝑥𝐾) ∧ 𝑌𝑉) → (𝑥 · 𝑌) ∈ 𝑉)
1312an32s 652 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ 𝑥𝐾) → (𝑥 · 𝑌) ∈ 𝑉)
14 eqid 2734 . . 3 (𝑥𝐾 ↦ (𝑥 · 𝑌)) = (𝑥𝐾 ↦ (𝑥 · 𝑌))
1513, 14fmptd 6920 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)):𝐾𝑉)
16 simpll 767 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑊 ∈ LMod)
17 simprl 771 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑖𝐾)
18 simprr 773 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑗𝐾)
19 simplr 769 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑌𝑉)
202, 4, 5, 10, 1, 3lmodvsdir 19895 . . . 4 ((𝑊 ∈ LMod ∧ (𝑖𝐾𝑗𝐾𝑌𝑉)) → ((𝑖(+g𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
2116, 17, 18, 19, 20syl13anc 1374 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑖(+g𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
2214a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) = (𝑥𝐾 ↦ (𝑥 · 𝑌)))
23 simpr 488 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = (𝑖(+g𝐹)𝑗)) → 𝑥 = (𝑖(+g𝐹)𝑗))
2423oveq1d 7217 . . . 4 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = (𝑖(+g𝐹)𝑗)) → (𝑥 · 𝑌) = ((𝑖(+g𝐹)𝑗) · 𝑌))
255, 1, 3lmodacl 19882 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑖𝐾𝑗𝐾) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
26253expb 1122 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑖𝐾𝑗𝐾)) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
2726adantlr 715 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
28 ovexd 7237 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑖(+g𝐹)𝑗) · 𝑌) ∈ V)
2922, 24, 27, 28fvmptd 6814 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g𝐹)𝑗)) = ((𝑖(+g𝐹)𝑗) · 𝑌))
30 simpr 488 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
3130oveq1d 7217 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑖) → (𝑥 · 𝑌) = (𝑖 · 𝑌))
32 ovexd 7237 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑖 · 𝑌) ∈ V)
3322, 31, 17, 32fvmptd 6814 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖) = (𝑖 · 𝑌))
34 simpr 488 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
3534oveq1d 7217 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑗) → (𝑥 · 𝑌) = (𝑗 · 𝑌))
36 ovexd 7237 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑗 · 𝑌) ∈ V)
3722, 35, 18, 36fvmptd 6814 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗) = (𝑗 · 𝑌))
3833, 37oveq12d 7220 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g𝑊)((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗)) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
3921, 29, 383eqtr4d 2784 . 2 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g𝐹)𝑗)) = (((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g𝑊)((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗)))
401, 2, 3, 4, 7, 9, 15, 39isghmd 18603 1 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3401  cmpt 5124  cfv 6369  (class class class)co 7202  Basecbs 16684  +gcplusg 16767  Scalarcsca 16770   ·𝑠 cvsca 16771  Grpcgrp 18337   GrpHom cghm 18591  LModclmod 19871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-ghm 18592  df-ring 19536  df-lmod 19873
This theorem is referenced by:  gsumvsmul1  31002
  Copyright terms: Public domain W3C validator