Step | Hyp | Ref
| Expression |
1 | | lmodvslmhm.k |
. 2
⊢ 𝐾 = (Base‘𝐹) |
2 | | lmodvslmhm.v |
. 2
⊢ 𝑉 = (Base‘𝑊) |
3 | | eqid 2738 |
. 2
⊢
(+g‘𝐹) = (+g‘𝐹) |
4 | | eqid 2738 |
. 2
⊢
(+g‘𝑊) = (+g‘𝑊) |
5 | | lmodvslmhm.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
6 | 5 | lmodfgrp 20047 |
. . 3
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
7 | 6 | adantr 480 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ Grp) |
8 | | lmodgrp 20045 |
. . 3
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
9 | 8 | adantr 480 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ Grp) |
10 | | lmodvslmhm.s |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑊) |
11 | 2, 5, 10, 1 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑥 · 𝑌) ∈ 𝑉) |
12 | 11 | 3expa 1116 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾) ∧ 𝑌 ∈ 𝑉) → (𝑥 · 𝑌) ∈ 𝑉) |
13 | 12 | an32s 648 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐾) → (𝑥 · 𝑌) ∈ 𝑉) |
14 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) |
15 | 13, 14 | fmptd 6970 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)):𝐾⟶𝑉) |
16 | | simpll 763 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑊 ∈ LMod) |
17 | | simprl 767 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑖 ∈ 𝐾) |
18 | | simprr 769 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑗 ∈ 𝐾) |
19 | | simplr 765 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑌 ∈ 𝑉) |
20 | 2, 4, 5, 10, 1, 3 | lmodvsdir 20062 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) |
21 | 16, 17, 18, 19, 20 | syl13anc 1370 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) |
22 | 14 | a1i 11 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))) |
23 | | simpr 484 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = (𝑖(+g‘𝐹)𝑗)) → 𝑥 = (𝑖(+g‘𝐹)𝑗)) |
24 | 23 | oveq1d 7270 |
. . . 4
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = (𝑖(+g‘𝐹)𝑗)) → (𝑥 · 𝑌) = ((𝑖(+g‘𝐹)𝑗) · 𝑌)) |
25 | 5, 1, 3 | lmodacl 20049 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) |
26 | 25 | 3expb 1118 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) |
27 | 26 | adantlr 711 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) |
28 | | ovexd 7290 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) ∈ V) |
29 | 22, 24, 27, 28 | fvmptd 6864 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g‘𝐹)𝑗)) = ((𝑖(+g‘𝐹)𝑗) · 𝑌)) |
30 | | simpr 484 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖) |
31 | 30 | oveq1d 7270 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑖) → (𝑥 · 𝑌) = (𝑖 · 𝑌)) |
32 | | ovexd 7290 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖 · 𝑌) ∈ V) |
33 | 22, 31, 17, 32 | fvmptd 6864 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖) = (𝑖 · 𝑌)) |
34 | | simpr 484 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗) |
35 | 34 | oveq1d 7270 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑗) → (𝑥 · 𝑌) = (𝑗 · 𝑌)) |
36 | | ovexd 7290 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑗 · 𝑌) ∈ V) |
37 | 22, 35, 18, 36 | fvmptd 6864 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗) = (𝑗 · 𝑌)) |
38 | 33, 37 | oveq12d 7273 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g‘𝑊)((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗)) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) |
39 | 21, 29, 38 | 3eqtr4d 2788 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g‘𝐹)𝑗)) = (((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g‘𝑊)((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗))) |
40 | 1, 2, 3, 4, 7, 9, 15, 39 | isghmd 18758 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊)) |