Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvslmhm Structured version   Visualization version   GIF version

Theorem lmodvslmhm 31212
Description: Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.)
Hypotheses
Ref Expression
lmodvslmhm.v 𝑉 = (Base‘𝑊)
lmodvslmhm.f 𝐹 = (Scalar‘𝑊)
lmodvslmhm.s · = ( ·𝑠𝑊)
lmodvslmhm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvslmhm ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊))
Distinct variable groups:   𝑥, ·   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌

Proof of Theorem lmodvslmhm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvslmhm.k . 2 𝐾 = (Base‘𝐹)
2 lmodvslmhm.v . 2 𝑉 = (Base‘𝑊)
3 eqid 2738 . 2 (+g𝐹) = (+g𝐹)
4 eqid 2738 . 2 (+g𝑊) = (+g𝑊)
5 lmodvslmhm.f . . . 4 𝐹 = (Scalar‘𝑊)
65lmodfgrp 20047 . . 3 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
76adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝐹 ∈ Grp)
8 lmodgrp 20045 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
98adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑊 ∈ Grp)
10 lmodvslmhm.s . . . . . 6 · = ( ·𝑠𝑊)
112, 5, 10, 1lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑌𝑉) → (𝑥 · 𝑌) ∈ 𝑉)
12113expa 1116 . . . 4 (((𝑊 ∈ LMod ∧ 𝑥𝐾) ∧ 𝑌𝑉) → (𝑥 · 𝑌) ∈ 𝑉)
1312an32s 648 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ 𝑥𝐾) → (𝑥 · 𝑌) ∈ 𝑉)
14 eqid 2738 . . 3 (𝑥𝐾 ↦ (𝑥 · 𝑌)) = (𝑥𝐾 ↦ (𝑥 · 𝑌))
1513, 14fmptd 6970 . 2 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)):𝐾𝑉)
16 simpll 763 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑊 ∈ LMod)
17 simprl 767 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑖𝐾)
18 simprr 769 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑗𝐾)
19 simplr 765 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → 𝑌𝑉)
202, 4, 5, 10, 1, 3lmodvsdir 20062 . . . 4 ((𝑊 ∈ LMod ∧ (𝑖𝐾𝑗𝐾𝑌𝑉)) → ((𝑖(+g𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
2116, 17, 18, 19, 20syl13anc 1370 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑖(+g𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
2214a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) = (𝑥𝐾 ↦ (𝑥 · 𝑌)))
23 simpr 484 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = (𝑖(+g𝐹)𝑗)) → 𝑥 = (𝑖(+g𝐹)𝑗))
2423oveq1d 7270 . . . 4 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = (𝑖(+g𝐹)𝑗)) → (𝑥 · 𝑌) = ((𝑖(+g𝐹)𝑗) · 𝑌))
255, 1, 3lmodacl 20049 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑖𝐾𝑗𝐾) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
26253expb 1118 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑖𝐾𝑗𝐾)) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
2726adantlr 711 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑖(+g𝐹)𝑗) ∈ 𝐾)
28 ovexd 7290 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑖(+g𝐹)𝑗) · 𝑌) ∈ V)
2922, 24, 27, 28fvmptd 6864 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g𝐹)𝑗)) = ((𝑖(+g𝐹)𝑗) · 𝑌))
30 simpr 484 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
3130oveq1d 7270 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑖) → (𝑥 · 𝑌) = (𝑖 · 𝑌))
32 ovexd 7290 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑖 · 𝑌) ∈ V)
3322, 31, 17, 32fvmptd 6864 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖) = (𝑖 · 𝑌))
34 simpr 484 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗)
3534oveq1d 7270 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) ∧ 𝑥 = 𝑗) → (𝑥 · 𝑌) = (𝑗 · 𝑌))
36 ovexd 7290 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (𝑗 · 𝑌) ∈ V)
3722, 35, 18, 36fvmptd 6864 . . . 4 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗) = (𝑗 · 𝑌))
3833, 37oveq12d 7273 . . 3 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → (((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g𝑊)((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗)) = ((𝑖 · 𝑌)(+g𝑊)(𝑗 · 𝑌)))
3921, 29, 383eqtr4d 2788 . 2 (((𝑊 ∈ LMod ∧ 𝑌𝑉) ∧ (𝑖𝐾𝑗𝐾)) → ((𝑥𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g𝐹)𝑗)) = (((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g𝑊)((𝑥𝐾 ↦ (𝑥 · 𝑌))‘𝑗)))
401, 2, 3, 4, 7, 9, 15, 39isghmd 18758 1 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492   GrpHom cghm 18746  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-ring 19700  df-lmod 20040
This theorem is referenced by:  gsumvsmul1  31213
  Copyright terms: Public domain W3C validator