| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lmodvslmhm.k | . 2
⊢ 𝐾 = (Base‘𝐹) | 
| 2 |  | lmodvslmhm.v | . 2
⊢ 𝑉 = (Base‘𝑊) | 
| 3 |  | eqid 2737 | . 2
⊢
(+g‘𝐹) = (+g‘𝐹) | 
| 4 |  | eqid 2737 | . 2
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 5 |  | lmodvslmhm.f | . . . 4
⊢ 𝐹 = (Scalar‘𝑊) | 
| 6 | 5 | lmodfgrp 20867 | . . 3
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | 
| 7 | 6 | adantr 480 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ Grp) | 
| 8 |  | lmodgrp 20865 | . . 3
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | 
| 9 | 8 | adantr 480 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ Grp) | 
| 10 |  | lmodvslmhm.s | . . . . . 6
⊢  · = (
·𝑠 ‘𝑊) | 
| 11 | 2, 5, 10, 1 | lmodvscl 20876 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑥 · 𝑌) ∈ 𝑉) | 
| 12 | 11 | 3expa 1119 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾) ∧ 𝑌 ∈ 𝑉) → (𝑥 · 𝑌) ∈ 𝑉) | 
| 13 | 12 | an32s 652 | . . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ 𝑥 ∈ 𝐾) → (𝑥 · 𝑌) ∈ 𝑉) | 
| 14 |  | eqid 2737 | . . 3
⊢ (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) | 
| 15 | 13, 14 | fmptd 7134 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)):𝐾⟶𝑉) | 
| 16 |  | simpll 767 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑊 ∈ LMod) | 
| 17 |  | simprl 771 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑖 ∈ 𝐾) | 
| 18 |  | simprr 773 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑗 ∈ 𝐾) | 
| 19 |  | simplr 769 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → 𝑌 ∈ 𝑉) | 
| 20 | 2, 4, 5, 10, 1, 3 | lmodvsdir 20884 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) | 
| 21 | 16, 17, 18, 19, 20 | syl13anc 1374 | . . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) | 
| 22 | 14 | a1i 11 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))) | 
| 23 |  | simpr 484 | . . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = (𝑖(+g‘𝐹)𝑗)) → 𝑥 = (𝑖(+g‘𝐹)𝑗)) | 
| 24 | 23 | oveq1d 7446 | . . . 4
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = (𝑖(+g‘𝐹)𝑗)) → (𝑥 · 𝑌) = ((𝑖(+g‘𝐹)𝑗) · 𝑌)) | 
| 25 | 5, 1, 3 | lmodacl 20870 | . . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) | 
| 26 | 25 | 3expb 1121 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) | 
| 27 | 26 | adantlr 715 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖(+g‘𝐹)𝑗) ∈ 𝐾) | 
| 28 |  | ovexd 7466 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑖(+g‘𝐹)𝑗) · 𝑌) ∈ V) | 
| 29 | 22, 24, 27, 28 | fvmptd 7023 | . . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g‘𝐹)𝑗)) = ((𝑖(+g‘𝐹)𝑗) · 𝑌)) | 
| 30 |  | simpr 484 | . . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖) | 
| 31 | 30 | oveq1d 7446 | . . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑖) → (𝑥 · 𝑌) = (𝑖 · 𝑌)) | 
| 32 |  | ovexd 7466 | . . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑖 · 𝑌) ∈ V) | 
| 33 | 22, 31, 17, 32 | fvmptd 7023 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖) = (𝑖 · 𝑌)) | 
| 34 |  | simpr 484 | . . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑗) → 𝑥 = 𝑗) | 
| 35 | 34 | oveq1d 7446 | . . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) ∧ 𝑥 = 𝑗) → (𝑥 · 𝑌) = (𝑗 · 𝑌)) | 
| 36 |  | ovexd 7466 | . . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (𝑗 · 𝑌) ∈ V) | 
| 37 | 22, 35, 18, 36 | fvmptd 7023 | . . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗) = (𝑗 · 𝑌)) | 
| 38 | 33, 37 | oveq12d 7449 | . . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → (((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g‘𝑊)((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗)) = ((𝑖 · 𝑌)(+g‘𝑊)(𝑗 · 𝑌))) | 
| 39 | 21, 29, 38 | 3eqtr4d 2787 | . 2
⊢ (((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) ∧ (𝑖 ∈ 𝐾 ∧ 𝑗 ∈ 𝐾)) → ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘(𝑖(+g‘𝐹)𝑗)) = (((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑖)(+g‘𝑊)((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌))‘𝑗))) | 
| 40 | 1, 2, 3, 4, 7, 9, 15, 39 | isghmd 19243 | 1
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊)) |