Step | Hyp | Ref
| Expression |
1 | | hgmapadd.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hgmapadd.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
4 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
5 | | hgmapadd.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | 1, 2, 3, 4, 5 | dvh1dim 39383 |
. . 3
⊢ (𝜑 → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈)) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
8 | 1, 7, 5 | lcdlmod 39533 |
. . . . . . . 8
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
9 | 8 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
10 | | hgmapadd.r |
. . . . . . . 8
⊢ 𝑅 = (Scalar‘𝑈) |
11 | | hgmapadd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘((LCDual‘𝐾)‘𝑊)) = (Scalar‘((LCDual‘𝐾)‘𝑊)) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
14 | | hgmapadd.g |
. . . . . . . 8
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
15 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | | hgmapadd.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
17 | 16 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑋 ∈ 𝐵) |
18 | 1, 2, 10, 11, 7, 12, 13, 14, 15, 17 | hgmapdcl 39831 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
19 | | hgmapadd.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
20 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 19 | hgmapdcl 39831 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
21 | 20 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
22 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
23 | | eqid 2738 |
. . . . . . . 8
⊢
((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) |
24 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ∈ (Base‘𝑈)) |
25 | 1, 2, 3, 7, 22, 23, 15, 24 | hdmapcl 39771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
26 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘((LCDual‘𝐾)‘𝑊)) =
(+g‘((LCDual‘𝐾)‘𝑊)) |
27 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠
‘((LCDual‘𝐾)‘𝑊)) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
29 | 22, 26, 12, 27, 13, 28 | lmodvsdir 20062 |
. . . . . . 7
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ ((𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))) → (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
30 | 9, 18, 21, 25, 29 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
31 | 1, 2, 5 | dvhlmod 39051 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LMod) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
33 | 19 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑌 ∈ 𝐵) |
34 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑈) = (+g‘𝑈) |
35 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
36 | | hgmapadd.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
37 | 3, 34, 10, 35, 11, 36 | lmodvsdir 20062 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈))) → ((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡) = ((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) |
38 | 32, 17, 33, 24, 37 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡) = ((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) |
39 | 38 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡)))) |
40 | 3, 10, 35, 11 | lmodvscl 20055 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑋( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
41 | 32, 17, 24, 40 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
42 | 3, 10, 35, 11 | lmodvscl 20055 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
43 | 32, 33, 24, 42 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
44 | 1, 2, 3, 34, 7, 26, 23, 15, 41, 43 | hdmapadd 39784 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) = ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)))) |
45 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 17 | hgmapvs 39832 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
46 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 33 | hgmapvs 39832 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
47 | 45, 46 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡))) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
48 | 39, 44, 47 | 3eqtrrd 2783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) = (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡))) |
49 | 10, 11, 36 | lmodacl 20049 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
50 | 31, 16, 19, 49 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
51 | 50 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) |
52 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 51 | hgmapvs 39832 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
53 | 30, 48, 52 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
54 | | eqid 2738 |
. . . . . 6
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) |
55 | 1, 7, 5 | lcdlvec 39532 |
. . . . . . 7
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
56 | 55 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
57 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 50 | hgmapdcl 39831 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
58 | 57 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 + 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
59 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 16 | hgmapdcl 39831 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
60 | 12, 13, 28 | lmodacl 20049 |
. . . . . . . 8
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
61 | 8, 59, 20, 60 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
62 | 61 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
63 | | simp3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ≠ (0g‘𝑈)) |
64 | 1, 2, 3, 4, 7, 54,
23, 15, 24 | hdmapeq0 39785 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 = (0g‘𝑈))) |
65 | 64 | necon3bid 2987 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 ≠ (0g‘𝑈))) |
66 | 63, 65 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊))) |
67 | 22, 27, 12, 13, 54, 56, 58, 62, 25, 66 | lvecvscan2 20289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) ↔ (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) |
68 | 53, 67 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) |
69 | 68 | rexlimdv3a 3214 |
. . 3
⊢ (𝜑 → (∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) |
70 | 6, 69 | mpd 15 |
. 2
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) |
71 | 1, 2, 10, 36, 7, 12, 28, 5 | lcdsadd 39542 |
. . 3
⊢ (𝜑 →
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = + ) |
72 | 71 | oveqd 7272 |
. 2
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) |
73 | 70, 72 | eqtrd 2778 |
1
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) |