| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hgmapadd.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | hgmapadd.u | . . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | eqid 2736 | . . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) | 
| 4 |  | eqid 2736 | . . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) | 
| 5 |  | hgmapadd.k | . . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 | 1, 2, 3, 4, 5 | dvh1dim 41445 | . . 3
⊢ (𝜑 → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈)) | 
| 7 |  | eqid 2736 | . . . . . . . . 9
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | 
| 8 | 1, 7, 5 | lcdlmod 41595 | . . . . . . . 8
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) | 
| 9 | 8 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LMod) | 
| 10 |  | hgmapadd.r | . . . . . . . 8
⊢ 𝑅 = (Scalar‘𝑈) | 
| 11 |  | hgmapadd.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 12 |  | eqid 2736 | . . . . . . . 8
⊢
(Scalar‘((LCDual‘𝐾)‘𝑊)) = (Scalar‘((LCDual‘𝐾)‘𝑊)) | 
| 13 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) | 
| 14 |  | hgmapadd.g | . . . . . . . 8
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | 
| 15 | 5 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 16 |  | hgmapadd.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 17 | 16 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑋 ∈ 𝐵) | 
| 18 | 1, 2, 10, 11, 7, 12, 13, 14, 15, 17 | hgmapdcl 41893 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 19 |  | hgmapadd.y | . . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 20 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 19 | hgmapdcl 41893 | . . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 21 | 20 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 22 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) | 
| 23 |  | eqid 2736 | . . . . . . . 8
⊢
((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | 
| 24 |  | simp2 1137 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ∈ (Base‘𝑈)) | 
| 25 | 1, 2, 3, 7, 22, 23, 15, 24 | hdmapcl 41833 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) | 
| 26 |  | eqid 2736 | . . . . . . . 8
⊢
(+g‘((LCDual‘𝐾)‘𝑊)) =
(+g‘((LCDual‘𝐾)‘𝑊)) | 
| 27 |  | eqid 2736 | . . . . . . . 8
⊢ (
·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠
‘((LCDual‘𝐾)‘𝑊)) | 
| 28 |  | eqid 2736 | . . . . . . . 8
⊢
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) | 
| 29 | 22, 26, 12, 27, 13, 28 | lmodvsdir 20885 | . . . . . . 7
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ ((𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))) → (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) | 
| 30 | 9, 18, 21, 25, 29 | syl13anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) | 
| 31 | 1, 2, 5 | dvhlmod 41113 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 32 | 31 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) | 
| 33 | 19 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑌 ∈ 𝐵) | 
| 34 |  | eqid 2736 | . . . . . . . . . 10
⊢
(+g‘𝑈) = (+g‘𝑈) | 
| 35 |  | eqid 2736 | . . . . . . . . . 10
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) | 
| 36 |  | hgmapadd.p | . . . . . . . . . 10
⊢  + =
(+g‘𝑅) | 
| 37 | 3, 34, 10, 35, 11, 36 | lmodvsdir 20885 | . . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈))) → ((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡) = ((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) | 
| 38 | 32, 17, 33, 24, 37 | syl13anc 1373 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡) = ((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) | 
| 39 | 38 | fveq2d 6909 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡)))) | 
| 40 | 3, 10, 35, 11 | lmodvscl 20877 | . . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑋( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) | 
| 41 | 32, 17, 24, 40 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) | 
| 42 | 3, 10, 35, 11 | lmodvscl 20877 | . . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) | 
| 43 | 32, 33, 24, 42 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) | 
| 44 | 1, 2, 3, 34, 7, 26, 23, 15, 41, 43 | hdmapadd 41846 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠
‘𝑈)𝑡)(+g‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) = ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)))) | 
| 45 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 17 | hgmapvs 41894 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) | 
| 46 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 33 | hgmapvs 41894 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) | 
| 47 | 45, 46 | oveq12d 7450 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡))) = (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) | 
| 48 | 39, 44, 47 | 3eqtrrd 2781 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) = (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡))) | 
| 49 | 10, 11, 36 | lmodacl 20871 | . . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 50 | 31, 16, 19, 49 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | 
| 51 | 50 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 52 | 1, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 51 | hgmapvs 41894 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) | 
| 53 | 30, 48, 52 | 3eqtrrd 2781 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) | 
| 54 |  | eqid 2736 | . . . . . 6
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) | 
| 55 | 1, 7, 5 | lcdlvec 41594 | . . . . . . 7
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LVec) | 
| 56 | 55 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LVec) | 
| 57 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 50 | hgmapdcl 41893 | . . . . . . 7
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 58 | 57 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 + 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 59 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 16 | hgmapdcl 41893 | . . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 60 | 12, 13, 28 | lmodacl 20871 | . . . . . . . 8
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 61 | 8, 59, 20, 60 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 62 | 61 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) | 
| 63 |  | simp3 1138 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ≠ (0g‘𝑈)) | 
| 64 | 1, 2, 3, 4, 7, 54,
23, 15, 24 | hdmapeq0 41847 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 = (0g‘𝑈))) | 
| 65 | 64 | necon3bid 2984 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 ≠ (0g‘𝑈))) | 
| 66 | 63, 65 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊))) | 
| 67 | 22, 27, 12, 13, 54, 56, 58, 62, 25, 66 | lvecvscan2 21115 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘(𝑋 + 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) ↔ (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) | 
| 68 | 53, 67 | mpbid 232 | . . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) | 
| 69 | 68 | rexlimdv3a 3158 | . . 3
⊢ (𝜑 → (∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) | 
| 70 | 6, 69 | mpd 15 | . 2
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) | 
| 71 | 1, 2, 10, 36, 7, 12, 28, 5 | lcdsadd 41604 | . . 3
⊢ (𝜑 →
(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = + ) | 
| 72 | 71 | oveqd 7449 | . 2
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) | 
| 73 | 70, 72 | eqtrd 2776 | 1
⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) |