Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapadd Structured version   Visualization version   GIF version

Theorem hgmapadd 37704
Description: Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hgmapadd.h 𝐻 = (LHyp‘𝐾)
hgmapadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapadd.r 𝑅 = (Scalar‘𝑈)
hgmapadd.b 𝐵 = (Base‘𝑅)
hgmapadd.p + = (+g𝑅)
hgmapadd.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hgmapadd.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hgmapadd.x (𝜑𝑋𝐵)
hgmapadd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
hgmapadd (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) + (𝐺𝑌)))

Proof of Theorem hgmapadd
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 hgmapadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hgmapadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2771 . . . 4 (Base‘𝑈) = (Base‘𝑈)
4 eqid 2771 . . . 4 (0g𝑈) = (0g𝑈)
5 hgmapadd.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 2, 3, 4, 5dvh1dim 37252 . . 3 (𝜑 → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g𝑈))
7 eqid 2771 . . . . . . . . 9 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
81, 7, 5lcdlmod 37402 . . . . . . . 8 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod)
983ad2ant1 1127 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LMod)
10 hgmapadd.r . . . . . . . 8 𝑅 = (Scalar‘𝑈)
11 hgmapadd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
12 eqid 2771 . . . . . . . 8 (Scalar‘((LCDual‘𝐾)‘𝑊)) = (Scalar‘((LCDual‘𝐾)‘𝑊))
13 eqid 2771 . . . . . . . 8 (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))
14 hgmapadd.g . . . . . . . 8 𝐺 = ((HGMap‘𝐾)‘𝑊)
1553ad2ant1 1127 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 hgmapadd.x . . . . . . . . 9 (𝜑𝑋𝐵)
17163ad2ant1 1127 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → 𝑋𝐵)
181, 2, 10, 11, 7, 12, 13, 14, 15, 17hgmapdcl 37700 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝐺𝑋) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
19 hgmapadd.y . . . . . . . . 9 (𝜑𝑌𝐵)
201, 2, 10, 11, 7, 12, 13, 14, 5, 19hgmapdcl 37700 . . . . . . . 8 (𝜑 → (𝐺𝑌) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
21203ad2ant1 1127 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝐺𝑌) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
22 eqid 2771 . . . . . . . 8 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
23 eqid 2771 . . . . . . . 8 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
24 simp2 1131 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → 𝑡 ∈ (Base‘𝑈))
251, 2, 3, 7, 22, 23, 15, 24hdmapcl 37640 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
26 eqid 2771 . . . . . . . 8 (+g‘((LCDual‘𝐾)‘𝑊)) = (+g‘((LCDual‘𝐾)‘𝑊))
27 eqid 2771 . . . . . . . 8 ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))
28 eqid 2771 . . . . . . . 8 (+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = (+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))
2922, 26, 12, 27, 13, 28lmodvsdir 19096 . . . . . . 7 ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ ((𝐺𝑋) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺𝑌) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))) → (((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))))
309, 18, 21, 25, 29syl13anc 1478 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))))
311, 2, 5dvhlmod 36920 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
32313ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → 𝑈 ∈ LMod)
33193ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → 𝑌𝐵)
34 eqid 2771 . . . . . . . . . 10 (+g𝑈) = (+g𝑈)
35 eqid 2771 . . . . . . . . . 10 ( ·𝑠𝑈) = ( ·𝑠𝑈)
36 hgmapadd.p . . . . . . . . . 10 + = (+g𝑅)
373, 34, 10, 35, 11, 36lmodvsdir 19096 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑡 ∈ (Base‘𝑈))) → ((𝑋 + 𝑌)( ·𝑠𝑈)𝑡) = ((𝑋( ·𝑠𝑈)𝑡)(+g𝑈)(𝑌( ·𝑠𝑈)𝑡)))
3832, 17, 33, 24, 37syl13anc 1478 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((𝑋 + 𝑌)( ·𝑠𝑈)𝑡) = ((𝑋( ·𝑠𝑈)𝑡)(+g𝑈)(𝑌( ·𝑠𝑈)𝑡)))
3938fveq2d 6337 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠𝑈)𝑡)(+g𝑈)(𝑌( ·𝑠𝑈)𝑡))))
403, 10, 35, 11lmodvscl 19089 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑋𝐵𝑡 ∈ (Base‘𝑈)) → (𝑋( ·𝑠𝑈)𝑡) ∈ (Base‘𝑈))
4132, 17, 24, 40syl3anc 1476 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝑋( ·𝑠𝑈)𝑡) ∈ (Base‘𝑈))
423, 10, 35, 11lmodvscl 19089 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑌𝐵𝑡 ∈ (Base‘𝑈)) → (𝑌( ·𝑠𝑈)𝑡) ∈ (Base‘𝑈))
4332, 33, 24, 42syl3anc 1476 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝑌( ·𝑠𝑈)𝑡) ∈ (Base‘𝑈))
441, 2, 3, 34, 7, 26, 23, 15, 41, 43hdmapadd 37653 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋( ·𝑠𝑈)𝑡)(+g𝑈)(𝑌( ·𝑠𝑈)𝑡))) = ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠𝑈)𝑡))))
451, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 17hgmapvs 37701 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠𝑈)𝑡)) = ((𝐺𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))
461, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 33hgmapvs 37701 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠𝑈)𝑡)) = ((𝐺𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))
4745, 46oveq12d 6813 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠𝑈)𝑡))(+g‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠𝑈)𝑡))) = (((𝐺𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))))
4839, 44, 473eqtrrd 2810 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((𝐺𝑋)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))(+g‘((LCDual‘𝐾)‘𝑊))((𝐺𝑌)( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) = (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠𝑈)𝑡)))
4910, 11, 36lmodacl 19083 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
5031, 16, 19, 49syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
51503ad2ant1 1127 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝑋 + 𝑌) ∈ 𝐵)
521, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 51hgmapvs 37701 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 + 𝑌)( ·𝑠𝑈)𝑡)) = ((𝐺‘(𝑋 + 𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))
5330, 48, 523eqtrrd 2810 . . . . 5 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((𝐺‘(𝑋 + 𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))
54 eqid 2771 . . . . . 6 (0g‘((LCDual‘𝐾)‘𝑊)) = (0g‘((LCDual‘𝐾)‘𝑊))
551, 7, 5lcdlvec 37401 . . . . . . 7 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LVec)
56553ad2ant1 1127 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LVec)
571, 2, 10, 11, 7, 12, 13, 14, 5, 50hgmapdcl 37700 . . . . . . 7 (𝜑 → (𝐺‘(𝑋 + 𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
58573ad2ant1 1127 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝐺‘(𝑋 + 𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
591, 2, 10, 11, 7, 12, 13, 14, 5, 16hgmapdcl 37700 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
6012, 13, 28lmodacl 19083 . . . . . . . 8 ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝐺𝑋) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺𝑌) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) → ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
618, 59, 20, 60syl3anc 1476 . . . . . . 7 (𝜑 → ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
62613ad2ant1 1127 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))))
63 simp3 1132 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → 𝑡 ≠ (0g𝑈))
641, 2, 3, 4, 7, 54, 23, 15, 24hdmapeq0 37654 . . . . . . . 8 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 = (0g𝑈)))
6564necon3bid 2987 . . . . . . 7 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) ≠ (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 ≠ (0g𝑈)))
6663, 65mpbird 247 . . . . . 6 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ≠ (0g‘((LCDual‘𝐾)‘𝑊)))
6722, 27, 12, 13, 54, 56, 58, 62, 25, 66lvecvscan2 19324 . . . . 5 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (((𝐺‘(𝑋 + 𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) ↔ (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))))
6853, 67mpbid 222 . . . 4 ((𝜑𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g𝑈)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)))
6968rexlimdv3a 3181 . . 3 (𝜑 → (∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g𝑈) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌))))
706, 69mpd 15 . 2 (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)))
711, 2, 10, 36, 7, 12, 28, 5lcdsadd 37411 . . 3 (𝜑 → (+g‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = + )
7271oveqd 6812 . 2 (𝜑 → ((𝐺𝑋)(+g‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺𝑌)) = ((𝐺𝑋) + (𝐺𝑌)))
7370, 72eqtrd 2805 1 (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺𝑋) + (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cfv 6030  (class class class)co 6795  Basecbs 16063  +gcplusg 16148  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  LModclmod 19072  LVecclvec 19314  HLchlt 35158  LHypclh 35792  DVecHcdvh 36888  LCDualclcd 37396  HDMapchdma 37602  HGMapchg 37693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-ot 4326  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-om 7216  df-1st 7318  df-2nd 7319  df-tpos 7507  df-undef 7554  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-n0 11499  df-z 11584  df-uz 11893  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-0g 16309  df-mre 16453  df-mrc 16454  df-acs 16456  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-oppg 17982  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lsatoms 34784  df-lshyp 34785  df-lcv 34827  df-lfl 34866  df-lkr 34894  df-ldual 34932  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968  df-tgrp 36552  df-tendo 36564  df-edring 36566  df-dveca 36812  df-disoa 36839  df-dvech 36889  df-dib 36949  df-dic 36983  df-dih 37039  df-doch 37158  df-djh 37205  df-lcdual 37397  df-mapd 37435  df-hvmap 37567  df-hdmap1 37603  df-hdmap 37604  df-hgmap 37694
This theorem is referenced by:  hdmapglem7  37739  hlhilsrnglem  37763
  Copyright terms: Public domain W3C validator