Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi2 | Structured version Visualization version GIF version |
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsdi2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsdi2.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsdi2.a | ⊢ + = (+g‘𝑅) |
ldualvsdi2.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualvsdi2.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsdi2.p | ⊢ ✚ = (+g‘𝐷) |
ldualvsdi2.s | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsdi2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsdi2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvsdi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
ldualvsdi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsdi2 | ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsdi2.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | ldualvsdi2.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualvsdi2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
5 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | ldualvsdi2.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualvsdi2.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
8 | ldualvsdi2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
9 | ldualvsdi2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | ldualvsdi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
11 | ldualvsdi2.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
12 | 3, 4, 11 | lmodacl 20144 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
13 | 8, 9, 10, 12 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐾) |
14 | ldualvsdi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14 | ldualvs 37159 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)}))) |
16 | 2, 3, 4, 11, 5, 1, 8, 9, 10, 14 | lflvsdi2a 37102 | . 2 ⊢ (𝜑 → (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌})))) |
17 | ldualvsdi2.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
18 | 1, 3, 4, 6, 7, 8, 9, 14 | ldualvscl 37161 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
19 | 1, 3, 4, 6, 7, 8, 10, 14 | ldualvscl 37161 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) ∈ 𝐹) |
20 | 1, 3, 11, 6, 17, 8, 18, 19 | ldualvadd 37151 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 | ldualvs 37159 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 14 | ldualvs 37159 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌}))) |
23 | 21, 22 | oveq12d 7285 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌})))) |
24 | 20, 23 | eqtr2d 2779 | . 2 ⊢ (𝜑 → ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
25 | 15, 16, 24 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 × cxp 5582 ‘cfv 6426 (class class class)co 7267 ∘f cof 7521 Basecbs 16922 +gcplusg 16972 .rcmulr 16973 Scalarcsca 16975 ·𝑠 cvsca 16976 LModclmod 20133 LFnlclfn 37079 LDualcld 37145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-plusg 16985 df-sca 16988 df-vsca 16989 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-grp 18590 df-mgp 19731 df-ring 19795 df-lmod 20135 df-lfl 37080 df-ldual 37146 |
This theorem is referenced by: lduallmodlem 37174 |
Copyright terms: Public domain | W3C validator |