Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi2 Structured version   Visualization version   GIF version

Theorem ldualvsdi2 39100
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi2.f 𝐹 = (LFnl‘𝑊)
ldualvsdi2.r 𝑅 = (Scalar‘𝑊)
ldualvsdi2.a + = (+g𝑅)
ldualvsdi2.k 𝐾 = (Base‘𝑅)
ldualvsdi2.d 𝐷 = (LDual‘𝑊)
ldualvsdi2.p = (+g𝐷)
ldualvsdi2.s · = ( ·𝑠𝐷)
ldualvsdi2.w (𝜑𝑊 ∈ LMod)
ldualvsdi2.x (𝜑𝑋𝐾)
ldualvsdi2.y (𝜑𝑌𝐾)
ldualvsdi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldualvsdi2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))

Proof of Theorem ldualvsdi2
StepHypRef Expression
1 ldualvsdi2.f . . 3 𝐹 = (LFnl‘𝑊)
2 eqid 2740 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi2.r . . 3 𝑅 = (Scalar‘𝑊)
4 ldualvsdi2.k . . 3 𝐾 = (Base‘𝑅)
5 eqid 2740 . . 3 (.r𝑅) = (.r𝑅)
6 ldualvsdi2.d . . 3 𝐷 = (LDual‘𝑊)
7 ldualvsdi2.s . . 3 · = ( ·𝑠𝐷)
8 ldualvsdi2.w . . 3 (𝜑𝑊 ∈ LMod)
9 ldualvsdi2.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi2.y . . . 4 (𝜑𝑌𝐾)
11 ldualvsdi2.a . . . . 5 + = (+g𝑅)
123, 4, 11lmodacl 20892 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
138, 9, 10, 12syl3anc 1371 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐾)
14 ldualvsdi2.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 13, 14ldualvs 39093 . 2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})))
162, 3, 4, 11, 5, 1, 8, 9, 10, 14lflvsdi2a 39036 . 2 (𝜑 → (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
17 ldualvsdi2.p . . . 4 = (+g𝐷)
181, 3, 4, 6, 7, 8, 9, 14ldualvscl 39095 . . . 4 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
191, 3, 4, 6, 7, 8, 10, 14ldualvscl 39095 . . . 4 (𝜑 → (𝑌 · 𝐺) ∈ 𝐹)
201, 3, 11, 6, 17, 8, 18, 19ldualvadd 39085 . . 3 (𝜑 → ((𝑋 · 𝐺) (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)))
211, 2, 3, 4, 5, 6, 7, 8, 9, 14ldualvs 39093 . . . 4 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 2, 3, 4, 5, 6, 7, 8, 10, 14ldualvs 39093 . . . 4 (𝜑 → (𝑌 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌})))
2321, 22oveq12d 7466 . . 3 (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
2420, 23eqtr2d 2781 . 2 (𝜑 → ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
2515, 16, 243eqtrd 2784 1 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  LModclmod 20880  LFnlclfn 39013  LDualcld 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-sca 17327  df-vsca 17328  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ring 20262  df-lmod 20882  df-lfl 39014  df-ldual 39080
This theorem is referenced by:  lduallmodlem  39108
  Copyright terms: Public domain W3C validator