![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi2 | Structured version Visualization version GIF version |
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsdi2.f | β’ πΉ = (LFnlβπ) |
ldualvsdi2.r | β’ π = (Scalarβπ) |
ldualvsdi2.a | β’ + = (+gβπ ) |
ldualvsdi2.k | β’ πΎ = (Baseβπ ) |
ldualvsdi2.d | β’ π· = (LDualβπ) |
ldualvsdi2.p | β’ β = (+gβπ·) |
ldualvsdi2.s | β’ Β· = ( Β·π βπ·) |
ldualvsdi2.w | β’ (π β π β LMod) |
ldualvsdi2.x | β’ (π β π β πΎ) |
ldualvsdi2.y | β’ (π β π β πΎ) |
ldualvsdi2.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
ldualvsdi2 | β’ (π β ((π + π) Β· πΊ) = ((π Β· πΊ) β (π Β· πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsdi2.f | . . 3 β’ πΉ = (LFnlβπ) | |
2 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
3 | ldualvsdi2.r | . . 3 β’ π = (Scalarβπ) | |
4 | ldualvsdi2.k | . . 3 β’ πΎ = (Baseβπ ) | |
5 | eqid 2730 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
6 | ldualvsdi2.d | . . 3 β’ π· = (LDualβπ) | |
7 | ldualvsdi2.s | . . 3 β’ Β· = ( Β·π βπ·) | |
8 | ldualvsdi2.w | . . 3 β’ (π β π β LMod) | |
9 | ldualvsdi2.x | . . . 4 β’ (π β π β πΎ) | |
10 | ldualvsdi2.y | . . . 4 β’ (π β π β πΎ) | |
11 | ldualvsdi2.a | . . . . 5 β’ + = (+gβπ ) | |
12 | 3, 4, 11 | lmodacl 20626 | . . . 4 β’ ((π β LMod β§ π β πΎ β§ π β πΎ) β (π + π) β πΎ) |
13 | 8, 9, 10, 12 | syl3anc 1369 | . . 3 β’ (π β (π + π) β πΎ) |
14 | ldualvsdi2.g | . . 3 β’ (π β πΊ β πΉ) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14 | ldualvs 38310 | . 2 β’ (π β ((π + π) Β· πΊ) = (πΊ βf (.rβπ )((Baseβπ) Γ {(π + π)}))) |
16 | 2, 3, 4, 11, 5, 1, 8, 9, 10, 14 | lflvsdi2a 38253 | . 2 β’ (π β (πΊ βf (.rβπ )((Baseβπ) Γ {(π + π)})) = ((πΊ βf (.rβπ )((Baseβπ) Γ {π})) βf + (πΊ βf (.rβπ )((Baseβπ) Γ {π})))) |
17 | ldualvsdi2.p | . . . 4 β’ β = (+gβπ·) | |
18 | 1, 3, 4, 6, 7, 8, 9, 14 | ldualvscl 38312 | . . . 4 β’ (π β (π Β· πΊ) β πΉ) |
19 | 1, 3, 4, 6, 7, 8, 10, 14 | ldualvscl 38312 | . . . 4 β’ (π β (π Β· πΊ) β πΉ) |
20 | 1, 3, 11, 6, 17, 8, 18, 19 | ldualvadd 38302 | . . 3 β’ (π β ((π Β· πΊ) β (π Β· πΊ)) = ((π Β· πΊ) βf + (π Β· πΊ))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 | ldualvs 38310 | . . . 4 β’ (π β (π Β· πΊ) = (πΊ βf (.rβπ )((Baseβπ) Γ {π}))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 14 | ldualvs 38310 | . . . 4 β’ (π β (π Β· πΊ) = (πΊ βf (.rβπ )((Baseβπ) Γ {π}))) |
23 | 21, 22 | oveq12d 7429 | . . 3 β’ (π β ((π Β· πΊ) βf + (π Β· πΊ)) = ((πΊ βf (.rβπ )((Baseβπ) Γ {π})) βf + (πΊ βf (.rβπ )((Baseβπ) Γ {π})))) |
24 | 20, 23 | eqtr2d 2771 | . 2 β’ (π β ((πΊ βf (.rβπ )((Baseβπ) Γ {π})) βf + (πΊ βf (.rβπ )((Baseβπ) Γ {π}))) = ((π Β· πΊ) β (π Β· πΊ))) |
25 | 15, 16, 24 | 3eqtrd 2774 | 1 β’ (π β ((π + π) Β· πΊ) = ((π Β· πΊ) β (π Β· πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 {csn 4627 Γ cxp 5673 βcfv 6542 (class class class)co 7411 βf cof 7670 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 LModclmod 20614 LFnlclfn 38230 LDualcld 38296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-sca 17217 df-vsca 17218 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-mgp 20029 df-ring 20129 df-lmod 20616 df-lfl 38231 df-ldual 38297 |
This theorem is referenced by: lduallmodlem 38325 |
Copyright terms: Public domain | W3C validator |