Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi2 Structured version   Visualization version   GIF version

Theorem ldualvsdi2 36312
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi2.f 𝐹 = (LFnl‘𝑊)
ldualvsdi2.r 𝑅 = (Scalar‘𝑊)
ldualvsdi2.a + = (+g𝑅)
ldualvsdi2.k 𝐾 = (Base‘𝑅)
ldualvsdi2.d 𝐷 = (LDual‘𝑊)
ldualvsdi2.p = (+g𝐷)
ldualvsdi2.s · = ( ·𝑠𝐷)
ldualvsdi2.w (𝜑𝑊 ∈ LMod)
ldualvsdi2.x (𝜑𝑋𝐾)
ldualvsdi2.y (𝜑𝑌𝐾)
ldualvsdi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldualvsdi2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))

Proof of Theorem ldualvsdi2
StepHypRef Expression
1 ldualvsdi2.f . . 3 𝐹 = (LFnl‘𝑊)
2 eqid 2821 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi2.r . . 3 𝑅 = (Scalar‘𝑊)
4 ldualvsdi2.k . . 3 𝐾 = (Base‘𝑅)
5 eqid 2821 . . 3 (.r𝑅) = (.r𝑅)
6 ldualvsdi2.d . . 3 𝐷 = (LDual‘𝑊)
7 ldualvsdi2.s . . 3 · = ( ·𝑠𝐷)
8 ldualvsdi2.w . . 3 (𝜑𝑊 ∈ LMod)
9 ldualvsdi2.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi2.y . . . 4 (𝜑𝑌𝐾)
11 ldualvsdi2.a . . . . 5 + = (+g𝑅)
123, 4, 11lmodacl 19628 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
138, 9, 10, 12syl3anc 1367 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐾)
14 ldualvsdi2.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 13, 14ldualvs 36305 . 2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})))
162, 3, 4, 11, 5, 1, 8, 9, 10, 14lflvsdi2a 36248 . 2 (𝜑 → (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
17 ldualvsdi2.p . . . 4 = (+g𝐷)
181, 3, 4, 6, 7, 8, 9, 14ldualvscl 36307 . . . 4 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
191, 3, 4, 6, 7, 8, 10, 14ldualvscl 36307 . . . 4 (𝜑 → (𝑌 · 𝐺) ∈ 𝐹)
201, 3, 11, 6, 17, 8, 18, 19ldualvadd 36297 . . 3 (𝜑 → ((𝑋 · 𝐺) (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)))
211, 2, 3, 4, 5, 6, 7, 8, 9, 14ldualvs 36305 . . . 4 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 2, 3, 4, 5, 6, 7, 8, 10, 14ldualvs 36305 . . . 4 (𝜑 → (𝑌 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌})))
2321, 22oveq12d 7160 . . 3 (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
2420, 23eqtr2d 2857 . 2 (𝜑 → ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
2515, 16, 243eqtrd 2860 1 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {csn 4553   × cxp 5539  cfv 6341  (class class class)co 7142  f cof 7393  Basecbs 16466  +gcplusg 16548  .rcmulr 16549  Scalarcsca 16551   ·𝑠 cvsca 16552  LModclmod 19617  LFnlclfn 36225  LDualcld 36291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-plusg 16561  df-sca 16564  df-vsca 16565  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-grp 18089  df-mgp 19223  df-ring 19282  df-lmod 19619  df-lfl 36226  df-ldual 36292
This theorem is referenced by:  lduallmodlem  36320
  Copyright terms: Public domain W3C validator