![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi2 | Structured version Visualization version GIF version |
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsdi2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsdi2.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsdi2.a | ⊢ + = (+g‘𝑅) |
ldualvsdi2.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualvsdi2.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsdi2.p | ⊢ ✚ = (+g‘𝐷) |
ldualvsdi2.s | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsdi2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsdi2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvsdi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
ldualvsdi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsdi2 | ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsdi2.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | eqid 2778 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | ldualvsdi2.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualvsdi2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
5 | eqid 2778 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | ldualvsdi2.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualvsdi2.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
8 | ldualvsdi2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
9 | ldualvsdi2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | ldualvsdi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
11 | ldualvsdi2.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
12 | 3, 4, 11 | lmodacl 19277 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
13 | 8, 9, 10, 12 | syl3anc 1439 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐾) |
14 | ldualvsdi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14 | ldualvs 35300 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)}))) |
16 | 2, 3, 4, 11, 5, 1, 8, 9, 10, 14 | lflvsdi2a 35243 | . 2 ⊢ (𝜑 → (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑌})))) |
17 | ldualvsdi2.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
18 | 1, 3, 4, 6, 7, 8, 9, 14 | ldualvscl 35302 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
19 | 1, 3, 4, 6, 7, 8, 10, 14 | ldualvscl 35302 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) ∈ 𝐹) |
20 | 1, 3, 11, 6, 17, 8, 18, 19 | ldualvadd 35292 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘𝑓 + (𝑌 · 𝐺))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 | ldualvs 35300 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 14 | ldualvs 35300 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑌}))) |
23 | 21, 22 | oveq12d 6942 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ∘𝑓 + (𝑌 · 𝐺)) = ((𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑌})))) |
24 | 20, 23 | eqtr2d 2815 | . 2 ⊢ (𝜑 → ((𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 (.r‘𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
25 | 15, 16, 24 | 3eqtrd 2818 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {csn 4398 × cxp 5355 ‘cfv 6137 (class class class)co 6924 ∘𝑓 cof 7174 Basecbs 16266 +gcplusg 16349 .rcmulr 16350 Scalarcsca 16352 ·𝑠 cvsca 16353 LModclmod 19266 LFnlclfn 35220 LDualcld 35286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-plusg 16362 df-sca 16365 df-vsca 16366 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-mgp 18888 df-ring 18947 df-lmod 19268 df-lfl 35221 df-ldual 35287 |
This theorem is referenced by: lduallmodlem 35315 |
Copyright terms: Public domain | W3C validator |