Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi2 Structured version   Visualization version   GIF version

Theorem ldualvsdi2 38842
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi2.f 𝐹 = (LFnl‘𝑊)
ldualvsdi2.r 𝑅 = (Scalar‘𝑊)
ldualvsdi2.a + = (+g𝑅)
ldualvsdi2.k 𝐾 = (Base‘𝑅)
ldualvsdi2.d 𝐷 = (LDual‘𝑊)
ldualvsdi2.p = (+g𝐷)
ldualvsdi2.s · = ( ·𝑠𝐷)
ldualvsdi2.w (𝜑𝑊 ∈ LMod)
ldualvsdi2.x (𝜑𝑋𝐾)
ldualvsdi2.y (𝜑𝑌𝐾)
ldualvsdi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldualvsdi2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))

Proof of Theorem ldualvsdi2
StepHypRef Expression
1 ldualvsdi2.f . . 3 𝐹 = (LFnl‘𝑊)
2 eqid 2726 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi2.r . . 3 𝑅 = (Scalar‘𝑊)
4 ldualvsdi2.k . . 3 𝐾 = (Base‘𝑅)
5 eqid 2726 . . 3 (.r𝑅) = (.r𝑅)
6 ldualvsdi2.d . . 3 𝐷 = (LDual‘𝑊)
7 ldualvsdi2.s . . 3 · = ( ·𝑠𝐷)
8 ldualvsdi2.w . . 3 (𝜑𝑊 ∈ LMod)
9 ldualvsdi2.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi2.y . . . 4 (𝜑𝑌𝐾)
11 ldualvsdi2.a . . . . 5 + = (+g𝑅)
123, 4, 11lmodacl 20848 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
138, 9, 10, 12syl3anc 1368 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐾)
14 ldualvsdi2.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 13, 14ldualvs 38835 . 2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})))
162, 3, 4, 11, 5, 1, 8, 9, 10, 14lflvsdi2a 38778 . 2 (𝜑 → (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
17 ldualvsdi2.p . . . 4 = (+g𝐷)
181, 3, 4, 6, 7, 8, 9, 14ldualvscl 38837 . . . 4 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
191, 3, 4, 6, 7, 8, 10, 14ldualvscl 38837 . . . 4 (𝜑 → (𝑌 · 𝐺) ∈ 𝐹)
201, 3, 11, 6, 17, 8, 18, 19ldualvadd 38827 . . 3 (𝜑 → ((𝑋 · 𝐺) (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)))
211, 2, 3, 4, 5, 6, 7, 8, 9, 14ldualvs 38835 . . . 4 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 2, 3, 4, 5, 6, 7, 8, 10, 14ldualvs 38835 . . . 4 (𝜑 → (𝑌 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌})))
2321, 22oveq12d 7442 . . 3 (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
2420, 23eqtr2d 2767 . 2 (𝜑 → ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
2515, 16, 243eqtrd 2770 1 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {csn 4633   × cxp 5680  cfv 6554  (class class class)co 7424  f cof 7688  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  LModclmod 20836  LFnlclfn 38755  LDualcld 38821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-sca 17282  df-vsca 17283  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-mgp 20118  df-ring 20218  df-lmod 20838  df-lfl 38756  df-ldual 38822
This theorem is referenced by:  lduallmodlem  38850
  Copyright terms: Public domain W3C validator