|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi2 | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) | 
| Ref | Expression | 
|---|---|
| ldualvsdi2.f | ⊢ 𝐹 = (LFnl‘𝑊) | 
| ldualvsdi2.r | ⊢ 𝑅 = (Scalar‘𝑊) | 
| ldualvsdi2.a | ⊢ + = (+g‘𝑅) | 
| ldualvsdi2.k | ⊢ 𝐾 = (Base‘𝑅) | 
| ldualvsdi2.d | ⊢ 𝐷 = (LDual‘𝑊) | 
| ldualvsdi2.p | ⊢ ✚ = (+g‘𝐷) | 
| ldualvsdi2.s | ⊢ · = ( ·𝑠 ‘𝐷) | 
| ldualvsdi2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) | 
| ldualvsdi2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) | 
| ldualvsdi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) | 
| ldualvsdi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| Ref | Expression | 
|---|---|
| ldualvsdi2 | ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ldualvsdi2.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ldualvsdi2.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 4 | ldualvsdi2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | ldualvsdi2.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
| 7 | ldualvsdi2.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 8 | ldualvsdi2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 9 | ldualvsdi2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 10 | ldualvsdi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 11 | ldualvsdi2.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 12 | 3, 4, 11 | lmodacl 20870 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | 
| 13 | 8, 9, 10, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐾) | 
| 14 | ldualvsdi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 14 | ldualvs 39138 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)}))) | 
| 16 | 2, 3, 4, 11, 5, 1, 8, 9, 10, 14 | lflvsdi2a 39081 | . 2 ⊢ (𝜑 → (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌})))) | 
| 17 | ldualvsdi2.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
| 18 | 1, 3, 4, 6, 7, 8, 9, 14 | ldualvscl 39140 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) | 
| 19 | 1, 3, 4, 6, 7, 8, 10, 14 | ldualvscl 39140 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) ∈ 𝐹) | 
| 20 | 1, 3, 11, 6, 17, 8, 18, 19 | ldualvadd 39130 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺))) | 
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14 | ldualvs 39138 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) | 
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 14 | ldualvs 39138 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌}))) | 
| 23 | 21, 22 | oveq12d 7449 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌})))) | 
| 24 | 20, 23 | eqtr2d 2778 | . 2 ⊢ (𝜑 → ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | 
| 25 | 15, 16, 24 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4626 × cxp 5683 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 LModclmod 20858 LFnlclfn 39058 LDualcld 39124 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-sca 17313 df-vsca 17314 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-mgp 20138 df-ring 20232 df-lmod 20860 df-lfl 39059 df-ldual 39125 | 
| This theorem is referenced by: lduallmodlem 39153 | 
| Copyright terms: Public domain | W3C validator |