Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi2 Structured version   Visualization version   GIF version

Theorem ldualvsdi2 35307
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi2.f 𝐹 = (LFnl‘𝑊)
ldualvsdi2.r 𝑅 = (Scalar‘𝑊)
ldualvsdi2.a + = (+g𝑅)
ldualvsdi2.k 𝐾 = (Base‘𝑅)
ldualvsdi2.d 𝐷 = (LDual‘𝑊)
ldualvsdi2.p = (+g𝐷)
ldualvsdi2.s · = ( ·𝑠𝐷)
ldualvsdi2.w (𝜑𝑊 ∈ LMod)
ldualvsdi2.x (𝜑𝑋𝐾)
ldualvsdi2.y (𝜑𝑌𝐾)
ldualvsdi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldualvsdi2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))

Proof of Theorem ldualvsdi2
StepHypRef Expression
1 ldualvsdi2.f . . 3 𝐹 = (LFnl‘𝑊)
2 eqid 2778 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi2.r . . 3 𝑅 = (Scalar‘𝑊)
4 ldualvsdi2.k . . 3 𝐾 = (Base‘𝑅)
5 eqid 2778 . . 3 (.r𝑅) = (.r𝑅)
6 ldualvsdi2.d . . 3 𝐷 = (LDual‘𝑊)
7 ldualvsdi2.s . . 3 · = ( ·𝑠𝐷)
8 ldualvsdi2.w . . 3 (𝜑𝑊 ∈ LMod)
9 ldualvsdi2.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi2.y . . . 4 (𝜑𝑌𝐾)
11 ldualvsdi2.a . . . . 5 + = (+g𝑅)
123, 4, 11lmodacl 19277 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
138, 9, 10, 12syl3anc 1439 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐾)
14 ldualvsdi2.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 13, 14ldualvs 35300 . 2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})))
162, 3, 4, 11, 5, 1, 8, 9, 10, 14lflvsdi2a 35243 . 2 (𝜑 → (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑌}))))
17 ldualvsdi2.p . . . 4 = (+g𝐷)
181, 3, 4, 6, 7, 8, 9, 14ldualvscl 35302 . . . 4 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
191, 3, 4, 6, 7, 8, 10, 14ldualvscl 35302 . . . 4 (𝜑 → (𝑌 · 𝐺) ∈ 𝐹)
201, 3, 11, 6, 17, 8, 18, 19ldualvadd 35292 . . 3 (𝜑 → ((𝑋 · 𝐺) (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘𝑓 + (𝑌 · 𝐺)))
211, 2, 3, 4, 5, 6, 7, 8, 9, 14ldualvs 35300 . . . 4 (𝜑 → (𝑋 · 𝐺) = (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 2, 3, 4, 5, 6, 7, 8, 10, 14ldualvs 35300 . . . 4 (𝜑 → (𝑌 · 𝐺) = (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑌})))
2321, 22oveq12d 6942 . . 3 (𝜑 → ((𝑋 · 𝐺) ∘𝑓 + (𝑌 · 𝐺)) = ((𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑌}))))
2420, 23eqtr2d 2815 . 2 (𝜑 → ((𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑋})) ∘𝑓 + (𝐺𝑓 (.r𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
2515, 16, 243eqtrd 2818 1 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {csn 4398   × cxp 5355  cfv 6137  (class class class)co 6924  𝑓 cof 7174  Basecbs 16266  +gcplusg 16349  .rcmulr 16350  Scalarcsca 16352   ·𝑠 cvsca 16353  LModclmod 19266  LFnlclfn 35220  LDualcld 35286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-plusg 16362  df-sca 16365  df-vsca 16366  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-mgp 18888  df-ring 18947  df-lmod 19268  df-lfl 35221  df-ldual 35287
This theorem is referenced by:  lduallmodlem  35315
  Copyright terms: Public domain W3C validator