HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdi Structured version   Visualization version   GIF version

Theorem mdi 32327
Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdi (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀 𝐵𝐶𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))

Proof of Theorem mdi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdbr 32326 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
21biimpd 229 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 → ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
3 sseq1 4034 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
4 oveq1 7455 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥 𝐴) = (𝐶 𝐴))
54ineq1d 4240 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥 𝐴) ∩ 𝐵) = ((𝐶 𝐴) ∩ 𝐵))
6 oveq1 7455 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 (𝐴𝐵)) = (𝐶 (𝐴𝐵)))
75, 6eqeq12d 2756 . . . . . 6 (𝑥 = 𝐶 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵))))
83, 7imbi12d 344 . . . . 5 (𝑥 = 𝐶 → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝐶𝐵 → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))))
98rspcv 3631 . . . 4 (𝐶C → (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (𝐶𝐵 → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))))
102, 9sylan9 507 . . 3 (((𝐴C𝐵C ) ∧ 𝐶C ) → (𝐴 𝑀 𝐵 → (𝐶𝐵 → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))))
11103impa 1110 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝑀 𝐵 → (𝐶𝐵 → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))))
1211imp32 418 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀 𝐵𝐶𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = (𝐶 (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976   class class class wbr 5166  (class class class)co 7448   C cch 30961   chj 30965   𝑀 cmd 30998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-iota 6525  df-fv 6581  df-ov 7451  df-md 32312
This theorem is referenced by:  mdsl3  32348  mdslmd3i  32364  mdexchi  32367  atabsi  32433
  Copyright terms: Public domain W3C validator