![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdi | Structured version Visualization version GIF version |
Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdi | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdbr 31534 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | |
2 | 1 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
3 | sseq1 4006 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) | |
4 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑥 ∨ℋ 𝐴) = (𝐶 ∨ℋ 𝐴)) | |
5 | 4 | ineq1d 4210 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)) |
6 | oveq1 7412 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | |
7 | 5, 6 | eqeq12d 2748 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ↔ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵)))) |
8 | 3, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) ↔ (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
9 | 8 | rspcv 3608 | . . . 4 ⊢ (𝐶 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
10 | 2, 9 | sylan9 508 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
11 | 10 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 → (𝐶 ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))))) |
12 | 11 | imp32 419 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3946 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7405 Cℋ cch 30169 ∨ℋ chj 30173 𝑀ℋ cmd 30206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-iota 6492 df-fv 6548 df-ov 7408 df-md 31520 |
This theorem is referenced by: mdsl3 31556 mdslmd3i 31572 mdexchi 31575 atabsi 31641 |
Copyright terms: Public domain | W3C validator |