HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdexchi Structured version   Visualization version   GIF version

Theorem mdexchi 30118
Description: An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdexch.1 𝐴C
mdexch.2 𝐵C
mdexch.3 𝐶C
Assertion
Ref Expression
mdexchi ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) 𝑀 𝐵 ∧ ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵)))

Proof of Theorem mdexchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdexch.3 . . . . . . . . . . . . . . 15 𝐶C
2 mdexch.1 . . . . . . . . . . . . . . 15 𝐴C
3 chjass 29316 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C𝑥C ) → ((𝐶 𝐴) ∨ 𝑥) = (𝐶 (𝐴 𝑥)))
41, 2, 3mp3an12 1448 . . . . . . . . . . . . . 14 (𝑥C → ((𝐶 𝐴) ∨ 𝑥) = (𝐶 (𝐴 𝑥)))
51, 2chjcli 29240 . . . . . . . . . . . . . . 15 (𝐶 𝐴) ∈ C
6 chjcom 29289 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐶 𝐴) ∈ C ) → (𝑥 (𝐶 𝐴)) = ((𝐶 𝐴) ∨ 𝑥))
75, 6mpan2 690 . . . . . . . . . . . . . 14 (𝑥C → (𝑥 (𝐶 𝐴)) = ((𝐶 𝐴) ∨ 𝑥))
8 chjcl 29140 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
92, 8mpan 689 . . . . . . . . . . . . . . 15 (𝑥C → (𝐴 𝑥) ∈ C )
10 chjcom 29289 . . . . . . . . . . . . . . 15 (((𝐴 𝑥) ∈ C𝐶C ) → ((𝐴 𝑥) ∨ 𝐶) = (𝐶 (𝐴 𝑥)))
119, 1, 10sylancl 589 . . . . . . . . . . . . . 14 (𝑥C → ((𝐴 𝑥) ∨ 𝐶) = (𝐶 (𝐴 𝑥)))
124, 7, 113eqtr4d 2843 . . . . . . . . . . . . 13 (𝑥C → (𝑥 (𝐶 𝐴)) = ((𝐴 𝑥) ∨ 𝐶))
1312ineq1d 4138 . . . . . . . . . . . 12 (𝑥C → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵))
14 inass 4146 . . . . . . . . . . . . 13 ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
15 incom 4128 . . . . . . . . . . . . . . 15 ((𝐴 𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴 𝐵))
16 mdexch.2 . . . . . . . . . . . . . . . . . 18 𝐵C
172, 16chjcomi 29251 . . . . . . . . . . . . . . . . 17 (𝐴 𝐵) = (𝐵 𝐴)
1817ineq2i 4136 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐵 𝐴))
1916, 2chabs2i 29302 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (𝐵 𝐴)) = 𝐵
2018, 19eqtri 2821 . . . . . . . . . . . . . . 15 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
2115, 20eqtri 2821 . . . . . . . . . . . . . 14 ((𝐴 𝐵) ∩ 𝐵) = 𝐵
2221ineq2i 4136 . . . . . . . . . . . . 13 (((𝐴 𝑥) ∨ 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵)) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵)
2314, 22eqtri 2821 . . . . . . . . . . . 12 ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵)
2413, 23eqtr4di 2851 . . . . . . . . . . 11 (𝑥C → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵))
2524ad2antrr 725 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵))
26 chlej2 29294 . . . . . . . . . . . . . . . . 17 (((𝑥C𝐵C𝐴C ) ∧ 𝑥𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
2726ex 416 . . . . . . . . . . . . . . . 16 ((𝑥C𝐵C𝐴C ) → (𝑥𝐵 → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
2816, 2, 27mp3an23 1450 . . . . . . . . . . . . . . 15 (𝑥C → (𝑥𝐵 → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
292, 16chjcli 29240 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
30 mdi 30078 . . . . . . . . . . . . . . . . . . 19 (((𝐶C ∧ (𝐴 𝐵) ∈ C ∧ (𝐴 𝑥) ∈ C ) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐴 𝑥) ⊆ (𝐴 𝐵))) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
3130exp32 424 . . . . . . . . . . . . . . . . . 18 ((𝐶C ∧ (𝐴 𝐵) ∈ C ∧ (𝐴 𝑥) ∈ C ) → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
321, 29, 31mp3an12 1448 . . . . . . . . . . . . . . . . 17 ((𝐴 𝑥) ∈ C → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
339, 32syl 17 . . . . . . . . . . . . . . . 16 (𝑥C → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3433com23 86 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (𝐶 𝑀 (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3528, 34syld 47 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐵 → (𝐶 𝑀 (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3635imp31 421 . . . . . . . . . . . . 13 (((𝑥C𝑥𝐵) ∧ 𝐶 𝑀 (𝐴 𝐵)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
3736adantrr 716 . . . . . . . . . . . 12 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
381, 29chincli 29243 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 𝐵)) ∈ C
39 chlej2 29294 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∩ (𝐴 𝐵)) ∈ C𝐴C ∧ (𝐴 𝑥) ∈ C ) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴))
4039ex 416 . . . . . . . . . . . . . . . . 17 (((𝐶 ∩ (𝐴 𝐵)) ∈ C𝐴C ∧ (𝐴 𝑥) ∈ C ) → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
4138, 2, 40mp3an12 1448 . . . . . . . . . . . . . . . 16 ((𝐴 𝑥) ∈ C → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
429, 41syl 17 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
4342imp 410 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴))
44 chjcom 29289 . . . . . . . . . . . . . . . . 17 (((𝐴 𝑥) ∈ C𝐴C ) → ((𝐴 𝑥) ∨ 𝐴) = (𝐴 (𝐴 𝑥)))
459, 2, 44sylancl 589 . . . . . . . . . . . . . . . 16 (𝑥C → ((𝐴 𝑥) ∨ 𝐴) = (𝐴 (𝐴 𝑥)))
462chjidmi 29304 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐴) = 𝐴
4746oveq1i 7145 . . . . . . . . . . . . . . . . 17 ((𝐴 𝐴) ∨ 𝑥) = (𝐴 𝑥)
48 chjass 29316 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝐴C𝑥C ) → ((𝐴 𝐴) ∨ 𝑥) = (𝐴 (𝐴 𝑥)))
492, 2, 48mp3an12 1448 . . . . . . . . . . . . . . . . 17 (𝑥C → ((𝐴 𝐴) ∨ 𝑥) = (𝐴 (𝐴 𝑥)))
50 chjcom 29289 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
512, 50mpan 689 . . . . . . . . . . . . . . . . 17 (𝑥C → (𝐴 𝑥) = (𝑥 𝐴))
5247, 49, 513eqtr3a 2857 . . . . . . . . . . . . . . . 16 (𝑥C → (𝐴 (𝐴 𝑥)) = (𝑥 𝐴))
5345, 52eqtrd 2833 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐴 𝑥) ∨ 𝐴) = (𝑥 𝐴))
5453adantr 484 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ 𝐴) = (𝑥 𝐴))
5543, 54sseqtrd 3955 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ (𝑥 𝐴))
5655ad2ant2rl 748 . . . . . . . . . . . 12 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ (𝑥 𝐴))
5737, 56eqsstrd 3953 . . . . . . . . . . 11 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐴))
5857ssrind 4162 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
5925, 58eqsstrd 3953 . . . . . . . . 9 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
6059adantrl 715 . . . . . . . 8 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
61 mdi 30078 . . . . . . . . . . . . . 14 (((𝐴C𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
6261exp32 424 . . . . . . . . . . . . 13 ((𝐴C𝐵C𝑥C ) → (𝐴 𝑀 𝐵 → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
632, 16, 62mp3an12 1448 . . . . . . . . . . . 12 (𝑥C → (𝐴 𝑀 𝐵 → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6463com23 86 . . . . . . . . . . 11 (𝑥C → (𝑥𝐵 → (𝐴 𝑀 𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6564imp31 421 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
662, 1chub2i 29253 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐶 𝐴)
67 ssrin 4160 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝐶 𝐴) → (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵))
6866, 67ax-mp 5 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)
692, 16chincli 29243 . . . . . . . . . . . . 13 (𝐴𝐵) ∈ C
705, 16chincli 29243 . . . . . . . . . . . . 13 ((𝐶 𝐴) ∩ 𝐵) ∈ C
71 chlej2 29294 . . . . . . . . . . . . . 14 ((((𝐴𝐵) ∈ C ∧ ((𝐶 𝐴) ∩ 𝐵) ∈ C𝑥C ) ∧ (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7271ex 416 . . . . . . . . . . . . 13 (((𝐴𝐵) ∈ C ∧ ((𝐶 𝐴) ∩ 𝐵) ∈ C𝑥C ) → ((𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
7369, 70, 72mp3an12 1448 . . . . . . . . . . . 12 (𝑥C → ((𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
7468, 73mpi 20 . . . . . . . . . . 11 (𝑥C → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7574ad2antrr 725 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7665, 75eqsstrd 3953 . . . . . . . . 9 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7776adantrr 716 . . . . . . . 8 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7860, 77sstrd 3925 . . . . . . 7 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7978exp31 423 . . . . . 6 (𝑥C → (𝑥𝐵 → ((𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
8079com3r 87 . . . . 5 ((𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (𝑥C → (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
81803impb 1112 . . . 4 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (𝑥C → (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
8281ralrimiv 3148 . . 3 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
83 mdbr2 30079 . . . 4 (((𝐶 𝐴) ∈ C𝐵C ) → ((𝐶 𝐴) 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
845, 16, 83mp2an 691 . . 3 ((𝐶 𝐴) 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
8582, 84sylibr 237 . 2 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (𝐶 𝐴) 𝑀 𝐵)
861, 2chjcomi 29251 . . . . 5 (𝐶 𝐴) = (𝐴 𝐶)
87 incom 4128 . . . . . 6 (𝐵 ∩ (𝐴 𝐵)) = ((𝐴 𝐵) ∩ 𝐵)
8818, 87, 193eqtr3ri 2830 . . . . 5 𝐵 = ((𝐴 𝐵) ∩ 𝐵)
8986, 88ineq12i 4137 . . . 4 ((𝐶 𝐴) ∩ 𝐵) = ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
90 inass 4146 . . . . 5 (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
912, 16chub1i 29252 . . . . . . . 8 𝐴 ⊆ (𝐴 𝐵)
92 mdi 30078 . . . . . . . . . 10 (((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵))) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
9392exp32 424 . . . . . . . . 9 ((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) → (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))))
941, 29, 2, 93mp3an 1458 . . . . . . . 8 (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵)))))
9591, 94mpi 20 . . . . . . 7 (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
962, 38chjcomi 29251 . . . . . . . 8 (𝐴 (𝐶 ∩ (𝐴 𝐵))) = ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴)
9738, 2chlejb1i 29259 . . . . . . . . 9 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 ↔ ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴) = 𝐴)
9897biimpi 219 . . . . . . . 8 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴) = 𝐴)
9996, 98syl5eq 2845 . . . . . . 7 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → (𝐴 (𝐶 ∩ (𝐴 𝐵))) = 𝐴)
10095, 99sylan9eq 2853 . . . . . 6 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = 𝐴)
101100ineq1d 4138 . . . . 5 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (𝐴𝐵))
10290, 101syl5eqr 2847 . . . 4 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵)) = (𝐴𝐵))
10389, 102syl5eq 2845 . . 3 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵))
1041033adant1 1127 . 2 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵))
10585, 104jca 515 1 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) 𝑀 𝐵 ∧ ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cin 3880  wss 3881   class class class wbr 5030  (class class class)co 7135   C cch 28712   chj 28716   𝑀 cmd 28749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-lm 21834  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cfil 23859  df-cau 23860  df-cmet 23861  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-ssp 28505  df-ph 28596  df-cbn 28646  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035  df-ch0 29036  df-shs 29091  df-chj 29093  df-md 30063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator