HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdexchi Structured version   Visualization version   GIF version

Theorem mdexchi 31277
Description: An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdexch.1 𝐴C
mdexch.2 𝐵C
mdexch.3 𝐶C
Assertion
Ref Expression
mdexchi ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) 𝑀 𝐵 ∧ ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵)))

Proof of Theorem mdexchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdexch.3 . . . . . . . . . . . . . . 15 𝐶C
2 mdexch.1 . . . . . . . . . . . . . . 15 𝐴C
3 chjass 30475 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C𝑥C ) → ((𝐶 𝐴) ∨ 𝑥) = (𝐶 (𝐴 𝑥)))
41, 2, 3mp3an12 1451 . . . . . . . . . . . . . 14 (𝑥C → ((𝐶 𝐴) ∨ 𝑥) = (𝐶 (𝐴 𝑥)))
51, 2chjcli 30399 . . . . . . . . . . . . . . 15 (𝐶 𝐴) ∈ C
6 chjcom 30448 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐶 𝐴) ∈ C ) → (𝑥 (𝐶 𝐴)) = ((𝐶 𝐴) ∨ 𝑥))
75, 6mpan2 689 . . . . . . . . . . . . . 14 (𝑥C → (𝑥 (𝐶 𝐴)) = ((𝐶 𝐴) ∨ 𝑥))
8 chjcl 30299 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
92, 8mpan 688 . . . . . . . . . . . . . . 15 (𝑥C → (𝐴 𝑥) ∈ C )
10 chjcom 30448 . . . . . . . . . . . . . . 15 (((𝐴 𝑥) ∈ C𝐶C ) → ((𝐴 𝑥) ∨ 𝐶) = (𝐶 (𝐴 𝑥)))
119, 1, 10sylancl 586 . . . . . . . . . . . . . 14 (𝑥C → ((𝐴 𝑥) ∨ 𝐶) = (𝐶 (𝐴 𝑥)))
124, 7, 113eqtr4d 2786 . . . . . . . . . . . . 13 (𝑥C → (𝑥 (𝐶 𝐴)) = ((𝐴 𝑥) ∨ 𝐶))
1312ineq1d 4171 . . . . . . . . . . . 12 (𝑥C → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵))
14 inass 4179 . . . . . . . . . . . . 13 ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
15 incom 4161 . . . . . . . . . . . . . . 15 ((𝐴 𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴 𝐵))
16 mdexch.2 . . . . . . . . . . . . . . . . . 18 𝐵C
172, 16chjcomi 30410 . . . . . . . . . . . . . . . . 17 (𝐴 𝐵) = (𝐵 𝐴)
1817ineq2i 4169 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (𝐴 𝐵)) = (𝐵 ∩ (𝐵 𝐴))
1916, 2chabs2i 30461 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (𝐵 𝐴)) = 𝐵
2018, 19eqtri 2764 . . . . . . . . . . . . . . 15 (𝐵 ∩ (𝐴 𝐵)) = 𝐵
2115, 20eqtri 2764 . . . . . . . . . . . . . 14 ((𝐴 𝐵) ∩ 𝐵) = 𝐵
2221ineq2i 4169 . . . . . . . . . . . . 13 (((𝐴 𝑥) ∨ 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵)) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵)
2314, 22eqtri 2764 . . . . . . . . . . . 12 ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (((𝐴 𝑥) ∨ 𝐶) ∩ 𝐵)
2413, 23eqtr4di 2794 . . . . . . . . . . 11 (𝑥C → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵))
2524ad2antrr 724 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) = ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵))
26 chlej2 30453 . . . . . . . . . . . . . . . . 17 (((𝑥C𝐵C𝐴C ) ∧ 𝑥𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
2726ex 413 . . . . . . . . . . . . . . . 16 ((𝑥C𝐵C𝐴C ) → (𝑥𝐵 → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
2816, 2, 27mp3an23 1453 . . . . . . . . . . . . . . 15 (𝑥C → (𝑥𝐵 → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
292, 16chjcli 30399 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
30 mdi 31237 . . . . . . . . . . . . . . . . . . 19 (((𝐶C ∧ (𝐴 𝐵) ∈ C ∧ (𝐴 𝑥) ∈ C ) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐴 𝑥) ⊆ (𝐴 𝐵))) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
3130exp32 421 . . . . . . . . . . . . . . . . . 18 ((𝐶C ∧ (𝐴 𝐵) ∈ C ∧ (𝐴 𝑥) ∈ C ) → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
321, 29, 31mp3an12 1451 . . . . . . . . . . . . . . . . 17 ((𝐴 𝑥) ∈ C → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
339, 32syl 17 . . . . . . . . . . . . . . . 16 (𝑥C → (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3433com23 86 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐴 𝑥) ⊆ (𝐴 𝐵) → (𝐶 𝑀 (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3528, 34syld 47 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐵 → (𝐶 𝑀 (𝐴 𝐵) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))))
3635imp31 418 . . . . . . . . . . . . 13 (((𝑥C𝑥𝐵) ∧ 𝐶 𝑀 (𝐴 𝐵)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
3736adantrr 715 . . . . . . . . . . . 12 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) = ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))))
381, 29chincli 30402 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 𝐵)) ∈ C
39 chlej2 30453 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∩ (𝐴 𝐵)) ∈ C𝐴C ∧ (𝐴 𝑥) ∈ C ) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴))
4039ex 413 . . . . . . . . . . . . . . . . 17 (((𝐶 ∩ (𝐴 𝐵)) ∈ C𝐴C ∧ (𝐴 𝑥) ∈ C ) → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
4138, 2, 40mp3an12 1451 . . . . . . . . . . . . . . . 16 ((𝐴 𝑥) ∈ C → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
429, 41syl 17 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴)))
4342imp 407 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ ((𝐴 𝑥) ∨ 𝐴))
44 chjcom 30448 . . . . . . . . . . . . . . . . 17 (((𝐴 𝑥) ∈ C𝐴C ) → ((𝐴 𝑥) ∨ 𝐴) = (𝐴 (𝐴 𝑥)))
459, 2, 44sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥C → ((𝐴 𝑥) ∨ 𝐴) = (𝐴 (𝐴 𝑥)))
462chjidmi 30463 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐴) = 𝐴
4746oveq1i 7367 . . . . . . . . . . . . . . . . 17 ((𝐴 𝐴) ∨ 𝑥) = (𝐴 𝑥)
48 chjass 30475 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝐴C𝑥C ) → ((𝐴 𝐴) ∨ 𝑥) = (𝐴 (𝐴 𝑥)))
492, 2, 48mp3an12 1451 . . . . . . . . . . . . . . . . 17 (𝑥C → ((𝐴 𝐴) ∨ 𝑥) = (𝐴 (𝐴 𝑥)))
50 chjcom 30448 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝑥C ) → (𝐴 𝑥) = (𝑥 𝐴))
512, 50mpan 688 . . . . . . . . . . . . . . . . 17 (𝑥C → (𝐴 𝑥) = (𝑥 𝐴))
5247, 49, 513eqtr3a 2800 . . . . . . . . . . . . . . . 16 (𝑥C → (𝐴 (𝐴 𝑥)) = (𝑥 𝐴))
5345, 52eqtrd 2776 . . . . . . . . . . . . . . 15 (𝑥C → ((𝐴 𝑥) ∨ 𝐴) = (𝑥 𝐴))
5453adantr 481 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ 𝐴) = (𝑥 𝐴))
5543, 54sseqtrd 3984 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ (𝑥 𝐴))
5655ad2ant2rl 747 . . . . . . . . . . . 12 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝐴 𝑥) ∨ (𝐶 ∩ (𝐴 𝐵))) ⊆ (𝑥 𝐴))
5737, 56eqsstrd 3982 . . . . . . . . . . 11 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ⊆ (𝑥 𝐴))
5857ssrind 4195 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((((𝐴 𝑥) ∨ 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
5925, 58eqsstrd 3982 . . . . . . . . 9 (((𝑥C𝑥𝐵) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
6059adantrl 714 . . . . . . . 8 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
61 mdi 31237 . . . . . . . . . . . . . 14 (((𝐴C𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
6261exp32 421 . . . . . . . . . . . . 13 ((𝐴C𝐵C𝑥C ) → (𝐴 𝑀 𝐵 → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
632, 16, 62mp3an12 1451 . . . . . . . . . . . 12 (𝑥C → (𝐴 𝑀 𝐵 → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6463com23 86 . . . . . . . . . . 11 (𝑥C → (𝑥𝐵 → (𝐴 𝑀 𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6564imp31 418 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
662, 1chub2i 30412 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐶 𝐴)
67 ssrin 4193 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝐶 𝐴) → (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵))
6866, 67ax-mp 5 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)
692, 16chincli 30402 . . . . . . . . . . . . 13 (𝐴𝐵) ∈ C
705, 16chincli 30402 . . . . . . . . . . . . 13 ((𝐶 𝐴) ∩ 𝐵) ∈ C
71 chlej2 30453 . . . . . . . . . . . . . 14 ((((𝐴𝐵) ∈ C ∧ ((𝐶 𝐴) ∩ 𝐵) ∈ C𝑥C ) ∧ (𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵)) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7271ex 413 . . . . . . . . . . . . 13 (((𝐴𝐵) ∈ C ∧ ((𝐶 𝐴) ∩ 𝐵) ∈ C𝑥C ) → ((𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
7369, 70, 72mp3an12 1451 . . . . . . . . . . . 12 (𝑥C → ((𝐴𝐵) ⊆ ((𝐶 𝐴) ∩ 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
7468, 73mpi 20 . . . . . . . . . . 11 (𝑥C → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7574ad2antrr 724 . . . . . . . . . 10 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → (𝑥 (𝐴𝐵)) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7665, 75eqsstrd 3982 . . . . . . . . 9 (((𝑥C𝑥𝐵) ∧ 𝐴 𝑀 𝐵) → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7776adantrr 715 . . . . . . . 8 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7860, 77sstrd 3954 . . . . . . 7 (((𝑥C𝑥𝐵) ∧ (𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴))) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))
7978exp31 420 . . . . . 6 (𝑥C → (𝑥𝐵 → ((𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
8079com3r 87 . . . . 5 ((𝐴 𝑀 𝐵 ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴)) → (𝑥C → (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
81803impb 1115 . . . 4 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (𝑥C → (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
8281ralrimiv 3142 . . 3 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
83 mdbr2 31238 . . . 4 (((𝐶 𝐴) ∈ C𝐵C ) → ((𝐶 𝐴) 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵)))))
845, 16, 83mp2an 690 . . 3 ((𝐶 𝐴) 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 (𝐶 𝐴)) ∩ 𝐵) ⊆ (𝑥 ((𝐶 𝐴) ∩ 𝐵))))
8582, 84sylibr 233 . 2 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (𝐶 𝐴) 𝑀 𝐵)
861, 2chjcomi 30410 . . . . 5 (𝐶 𝐴) = (𝐴 𝐶)
87 incom 4161 . . . . . 6 (𝐵 ∩ (𝐴 𝐵)) = ((𝐴 𝐵) ∩ 𝐵)
8818, 87, 193eqtr3ri 2773 . . . . 5 𝐵 = ((𝐴 𝐵) ∩ 𝐵)
8986, 88ineq12i 4170 . . . 4 ((𝐶 𝐴) ∩ 𝐵) = ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
90 inass 4179 . . . . 5 (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
912, 16chub1i 30411 . . . . . . . 8 𝐴 ⊆ (𝐴 𝐵)
92 mdi 31237 . . . . . . . . . 10 (((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵))) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
9392exp32 421 . . . . . . . . 9 ((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) → (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))))
941, 29, 2, 93mp3an 1461 . . . . . . . 8 (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵)))))
9591, 94mpi 20 . . . . . . 7 (𝐶 𝑀 (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
962, 38chjcomi 30410 . . . . . . . 8 (𝐴 (𝐶 ∩ (𝐴 𝐵))) = ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴)
9738, 2chlejb1i 30418 . . . . . . . . 9 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 ↔ ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴) = 𝐴)
9897biimpi 215 . . . . . . . 8 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → ((𝐶 ∩ (𝐴 𝐵)) ∨ 𝐴) = 𝐴)
9996, 98eqtrid 2788 . . . . . . 7 ((𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴 → (𝐴 (𝐶 ∩ (𝐴 𝐵))) = 𝐴)
10095, 99sylan9eq 2796 . . . . . 6 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = 𝐴)
101100ineq1d 4171 . . . . 5 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (𝐴𝐵))
10290, 101eqtr3id 2790 . . . 4 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵)) = (𝐴𝐵))
10389, 102eqtrid 2788 . . 3 ((𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵))
1041033adant1 1130 . 2 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵))
10585, 104jca 512 1 ((𝐴 𝑀 𝐵𝐶 𝑀 (𝐴 𝐵) ∧ (𝐶 ∩ (𝐴 𝐵)) ⊆ 𝐴) → ((𝐶 𝐴) 𝑀 𝐵 ∧ ((𝐶 𝐴) ∩ 𝐵) = (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910   class class class wbr 5105  (class class class)co 7357   C cch 29871   chj 29875   𝑀 cmd 29908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027  ax-hcompl 30144
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-ssp 29664  df-ph 29755  df-cbn 29805  df-hnorm 29910  df-hba 29911  df-hvsub 29913  df-hlim 29914  df-hcau 29915  df-sh 30149  df-ch 30163  df-oc 30194  df-ch0 30195  df-shs 30250  df-chj 30252  df-md 31222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator