| Step | Hyp | Ref
| Expression |
| 1 | | mdexch.3 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 ∈
Cℋ |
| 2 | | mdexch.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ∈
Cℋ |
| 3 | | chjass 31519 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → ((𝐶 ∨ℋ 𝐴) ∨ℋ 𝑥) = (𝐶 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 4 | 1, 2, 3 | mp3an12 1453 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈
Cℋ → ((𝐶 ∨ℋ 𝐴) ∨ℋ 𝑥) = (𝐶 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 5 | 1, 2 | chjcli 31443 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∨ℋ 𝐴) ∈
Cℋ |
| 6 | | chjcom 31492 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈
Cℋ ∧ (𝐶 ∨ℋ 𝐴) ∈ Cℋ )
→ (𝑥
∨ℋ (𝐶
∨ℋ 𝐴))
= ((𝐶
∨ℋ 𝐴)
∨ℋ 𝑥)) |
| 7 | 5, 6 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) = ((𝐶 ∨ℋ 𝐴) ∨ℋ 𝑥)) |
| 8 | | chjcl 31343 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ (𝐴
∨ℋ 𝑥)
∈ Cℋ ) |
| 9 | 2, 8 | mpan 690 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
Cℋ → (𝐴 ∨ℋ 𝑥) ∈ Cℋ
) |
| 10 | | chjcom 31492 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∨ℋ 𝑥) ∈
Cℋ ∧ 𝐶 ∈ Cℋ )
→ ((𝐴
∨ℋ 𝑥)
∨ℋ 𝐶) =
(𝐶 ∨ℋ
(𝐴 ∨ℋ
𝑥))) |
| 11 | 9, 1, 10 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) = (𝐶 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 12 | 4, 7, 11 | 3eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶)) |
| 13 | 12 | ineq1d 4199 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
Cℋ → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) = (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ 𝐵)) |
| 14 | | inass 4208 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) |
| 15 | | incom 4189 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴 ∨ℋ 𝐵)) |
| 16 | | mdexch.2 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 ∈
Cℋ |
| 17 | 2, 16 | chjcomi 31454 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
| 18 | 17 | ineq2i 4197 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) |
| 19 | 16, 2 | chabs2i 31505 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵 |
| 20 | 18, 19 | eqtri 2759 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐵 |
| 21 | 15, 20 | eqtri 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) = 𝐵 |
| 22 | 21 | ineq2i 4197 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) = (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ 𝐵) |
| 23 | 14, 22 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ 𝐵) |
| 24 | 13, 23 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
Cℋ → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) = ((((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵)) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) = ((((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵)) |
| 26 | | chlej2 31497 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) ∧ 𝑥 ⊆ 𝐵) → (𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵)) |
| 27 | 26 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) → (𝑥 ⊆ 𝐵 → (𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 28 | 16, 2, 27 | mp3an23 1455 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ 𝐵 → (𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵))) |
| 29 | 2, 16 | chjcli 31443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∨ℋ 𝐵) ∈
Cℋ |
| 30 | | mdi 32281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ
∧ (𝐴
∨ℋ 𝑥)
∈ Cℋ ) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵))) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 31 | 30 | exp32 420 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ
∧ (𝐴
∨ℋ 𝑥)
∈ Cℋ ) → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 32 | 1, 29, 31 | mp3an12 1453 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∨ℋ 𝑥) ∈
Cℋ → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 33 | 9, 32 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
Cℋ → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 34 | 33 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∨ℋ 𝑥) ⊆ (𝐴 ∨ℋ 𝐵) → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 35 | 28, 34 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ 𝐵 → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 36 | 35 | imp31 417 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵)) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 37 | 36 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 38 | 1, 29 | chincli 31446 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∈
Cℋ |
| 39 | | chlej2 31497 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝑥) ∈ Cℋ )
∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴)) |
| 40 | 39 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝑥) ∈ Cℋ )
→ ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴))) |
| 41 | 38, 2, 40 | mp3an12 1453 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∨ℋ 𝑥) ∈
Cℋ → ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴))) |
| 42 | 9, 41 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
Cℋ → ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴))) |
| 43 | 42 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
Cℋ ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴)) |
| 44 | | chjcom 31492 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∨ℋ 𝑥) ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ ((𝐴
∨ℋ 𝑥)
∨ℋ 𝐴) =
(𝐴 ∨ℋ
(𝐴 ∨ℋ
𝑥))) |
| 45 | 9, 2, 44 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴) = (𝐴 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 46 | 2 | chjidmi 31507 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∨ℋ 𝐴) = 𝐴 |
| 47 | 46 | oveq1i 7420 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∨ℋ 𝐴) ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝑥) |
| 48 | | chjass 31519 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
Cℋ ∧ 𝐴 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → ((𝐴 ∨ℋ 𝐴) ∨ℋ 𝑥) = (𝐴 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 49 | 2, 2, 48 | mp3an12 1453 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∨ℋ 𝐴) ∨ℋ 𝑥) = (𝐴 ∨ℋ (𝐴 ∨ℋ 𝑥))) |
| 50 | | chjcom 31492 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ (𝐴
∨ℋ 𝑥) =
(𝑥 ∨ℋ
𝐴)) |
| 51 | 2, 50 | mpan 690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
Cℋ → (𝐴 ∨ℋ 𝑥) = (𝑥 ∨ℋ 𝐴)) |
| 52 | 47, 49, 51 | 3eqtr3a 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
Cℋ → (𝐴 ∨ℋ (𝐴 ∨ℋ 𝑥)) = (𝑥 ∨ℋ 𝐴)) |
| 53 | 45, 52 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴) = (𝑥 ∨ℋ 𝐴)) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
Cℋ ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐴) = (𝑥 ∨ℋ 𝐴)) |
| 55 | 43, 54 | sseqtrd 4000 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
Cℋ ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ (𝑥 ∨ℋ 𝐴)) |
| 56 | 55 | ad2ant2rl 749 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → ((𝐴 ∨ℋ 𝑥) ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) ⊆ (𝑥 ∨ℋ 𝐴)) |
| 57 | 37, 56 | eqsstrd 3998 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → (((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (𝑥 ∨ℋ 𝐴)) |
| 58 | 57 | ssrind 4224 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → ((((𝐴 ∨ℋ 𝑥) ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
| 59 | 25, 58 | eqsstrd 3998 |
. . . . . . . . 9
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
| 60 | 59 | adantrl 716 |
. . . . . . . 8
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴))) → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
| 61 | | mdi 32281 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝑥 ⊆ 𝐵)) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
| 62 | 61 | exp32 420 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ
∧ 𝑥 ∈
Cℋ ) → (𝐴 𝑀ℋ 𝐵 → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 63 | 2, 16, 62 | mp3an12 1453 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
Cℋ → (𝐴 𝑀ℋ 𝐵 → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 64 | 63 | com23 86 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ 𝐵 → (𝐴 𝑀ℋ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
| 65 | 64 | imp31 417 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ 𝐴 𝑀ℋ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
| 66 | 2, 1 | chub2i 31456 |
. . . . . . . . . . . . 13
⊢ 𝐴 ⊆ (𝐶 ∨ℋ 𝐴) |
| 67 | | ssrin 4222 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ (𝐶 ∨ℋ 𝐴) → (𝐴 ∩ 𝐵) ⊆ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)) |
| 68 | 66, 67 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐵) ⊆ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) |
| 69 | 2, 16 | chincli 31446 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ 𝐵) ∈
Cℋ |
| 70 | 5, 16 | chincli 31446 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) ∈
Cℋ |
| 71 | | chlej2 31497 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∩ 𝐵) ∈ Cℋ
∧ ((𝐶
∨ℋ 𝐴)
∩ 𝐵) ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
∧ (𝐴 ∩ 𝐵) ⊆ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 72 | 71 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ
∧ ((𝐶
∨ℋ 𝐴)
∩ 𝐵) ∈
Cℋ ∧ 𝑥 ∈ Cℋ )
→ ((𝐴 ∩ 𝐵) ⊆ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 73 | 69, 70, 72 | mp3an12 1453 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
Cℋ → ((𝐴 ∩ 𝐵) ⊆ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 74 | 68, 73 | mpi 20 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
Cℋ → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 75 | 74 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ 𝐴 𝑀ℋ 𝐵) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 76 | 65, 75 | eqsstrd 3998 |
. . . . . . . . 9
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ 𝐴 𝑀ℋ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 77 | 76 | adantrr 717 |
. . . . . . . 8
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴))) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 78 | 60, 77 | sstrd 3974 |
. . . . . . 7
⊢ (((𝑥 ∈
Cℋ ∧ 𝑥 ⊆ 𝐵) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴))) → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))) |
| 79 | 78 | exp31 419 |
. . . . . 6
⊢ (𝑥 ∈
Cℋ → (𝑥 ⊆ 𝐵 → ((𝐴 𝑀ℋ 𝐵 ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))))) |
| 80 | 79 | com3r 87 |
. . . . 5
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴)) → (𝑥 ∈ Cℋ
→ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))))) |
| 81 | 80 | 3impb 1114 |
. . . 4
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → (𝑥 ∈ Cℋ
→ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))))) |
| 82 | 81 | ralrimiv 3132 |
. . 3
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 83 | | mdbr2 32282 |
. . . 4
⊢ (((𝐶 ∨ℋ 𝐴) ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ ((𝐶
∨ℋ 𝐴)
𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵))))) |
| 84 | 5, 16, 83 | mp2an 692 |
. . 3
⊢ ((𝐶 ∨ℋ 𝐴) 𝑀ℋ
𝐵 ↔ ∀𝑥 ∈
Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ (𝐶 ∨ℋ 𝐴)) ∩ 𝐵) ⊆ (𝑥 ∨ℋ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵)))) |
| 85 | 82, 84 | sylibr 234 |
. 2
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → (𝐶 ∨ℋ 𝐴) 𝑀ℋ 𝐵) |
| 86 | 1, 2 | chjcomi 31454 |
. . . . 5
⊢ (𝐶 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐶) |
| 87 | | incom 4189 |
. . . . . 6
⊢ (𝐵 ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) |
| 88 | 18, 87, 19 | 3eqtr3ri 2768 |
. . . . 5
⊢ 𝐵 = ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) |
| 89 | 86, 88 | ineq12i 4198 |
. . . 4
⊢ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = ((𝐴 ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) |
| 90 | | inass 4208 |
. . . . 5
⊢ (((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = ((𝐴 ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) |
| 91 | 2, 16 | chub1i 31455 |
. . . . . . . 8
⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
| 92 | | mdi 32281 |
. . . . . . . . . 10
⊢ (((𝐶 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 93 | 92 | exp32 420 |
. . . . . . . . 9
⊢ ((𝐶 ∈
Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
| 94 | 1, 29, 2, 93 | mp3an 1463 |
. . . . . . . 8
⊢ (𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) → (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
| 95 | 91, 94 | mpi 20 |
. . . . . . 7
⊢ (𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
| 96 | 2, 38 | chjcomi 31454 |
. . . . . . . 8
⊢ (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) = ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∨ℋ 𝐴) |
| 97 | 38, 2 | chlejb1i 31462 |
. . . . . . . . 9
⊢ ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 ↔ ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∨ℋ 𝐴) = 𝐴) |
| 98 | 97 | biimpi 216 |
. . . . . . . 8
⊢ ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 → ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ∨ℋ 𝐴) = 𝐴) |
| 99 | 96, 98 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴 → (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) = 𝐴) |
| 100 | 95, 99 | sylan9eq 2791 |
. . . . . 6
⊢ ((𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴) |
| 101 | 100 | ineq1d 4199 |
. . . . 5
⊢ ((𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → (((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
| 102 | 90, 101 | eqtr3id 2785 |
. . . 4
⊢ ((𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) = (𝐴 ∩ 𝐵)) |
| 103 | 89, 102 | eqtrid 2783 |
. . 3
⊢ ((𝐶 𝑀ℋ
(𝐴 ∨ℋ
𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
| 104 | 103 | 3adant1 1130 |
. 2
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
| 105 | 85, 104 | jca 511 |
1
⊢ ((𝐴 𝑀ℋ
𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ 𝐵 ∧ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵))) |