HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atabsi Structured version   Visualization version   GIF version

Theorem atabsi 32363
Description: Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
atabs.1 𝐴C
atabs.2 𝐵C
Assertion
Ref Expression
atabsi (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ 𝐵) = (𝐴𝐵)))

Proof of Theorem atabsi
StepHypRef Expression
1 inass 4181 . . . 4 (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵))
2 atabs.1 . . . . . . . 8 𝐴C
3 atabs.2 . . . . . . . 8 𝐵C
42, 3chjcomi 31430 . . . . . . 7 (𝐴 𝐵) = (𝐵 𝐴)
54ineq1i 4169 . . . . . 6 ((𝐴 𝐵) ∩ 𝐵) = ((𝐵 𝐴) ∩ 𝐵)
6 incom 4162 . . . . . 6 ((𝐵 𝐴) ∩ 𝐵) = (𝐵 ∩ (𝐵 𝐴))
73, 2chabs2i 31481 . . . . . 6 (𝐵 ∩ (𝐵 𝐴)) = 𝐵
85, 6, 73eqtri 2756 . . . . 5 ((𝐴 𝐵) ∩ 𝐵) = 𝐵
98ineq2i 4170 . . . 4 ((𝐴 𝐶) ∩ ((𝐴 𝐵) ∩ 𝐵)) = ((𝐴 𝐶) ∩ 𝐵)
101, 9eqtr2i 2753 . . 3 ((𝐴 𝐶) ∩ 𝐵) = (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵)
112, 3chub1i 31431 . . . . . . 7 𝐴 ⊆ (𝐴 𝐵)
12 atelch 32306 . . . . . . . 8 (𝐶 ∈ HAtoms → 𝐶C )
132, 3chjcli 31419 . . . . . . . . 9 (𝐴 𝐵) ∈ C
14 atmd 32361 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ (𝐴 𝐵) ∈ C ) → 𝐶 𝑀 (𝐴 𝐵))
1513, 14mpan2 691 . . . . . . . 8 (𝐶 ∈ HAtoms → 𝐶 𝑀 (𝐴 𝐵))
16 mdi 32257 . . . . . . . . . 10 (((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) ∧ (𝐶 𝑀 (𝐴 𝐵) ∧ 𝐴 ⊆ (𝐴 𝐵))) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
1716exp32 420 . . . . . . . . 9 ((𝐶C ∧ (𝐴 𝐵) ∈ C𝐴C ) → (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))))
1813, 2, 17mp3an23 1455 . . . . . . . 8 (𝐶C → (𝐶 𝑀 (𝐴 𝐵) → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))))
1912, 15, 18sylc 65 . . . . . . 7 (𝐶 ∈ HAtoms → (𝐴 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵)))))
2011, 19mpi 20 . . . . . 6 (𝐶 ∈ HAtoms → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
2120adantr 480 . . . . 5 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = (𝐴 (𝐶 ∩ (𝐴 𝐵))))
22 incom 4162 . . . . . . . 8 (𝐶 ∩ (𝐴 𝐵)) = ((𝐴 𝐵) ∩ 𝐶)
23 atnssm0 32338 . . . . . . . . . 10 (((𝐴 𝐵) ∈ C𝐶 ∈ HAtoms) → (¬ 𝐶 ⊆ (𝐴 𝐵) ↔ ((𝐴 𝐵) ∩ 𝐶) = 0))
2413, 23mpan 690 . . . . . . . . 9 (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 𝐵) ↔ ((𝐴 𝐵) ∩ 𝐶) = 0))
2524biimpa 476 . . . . . . . 8 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → ((𝐴 𝐵) ∩ 𝐶) = 0)
2622, 25eqtrid 2776 . . . . . . 7 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → (𝐶 ∩ (𝐴 𝐵)) = 0)
2726oveq2d 7369 . . . . . 6 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → (𝐴 (𝐶 ∩ (𝐴 𝐵))) = (𝐴 0))
282chj0i 31417 . . . . . 6 (𝐴 0) = 𝐴
2927, 28eqtrdi 2780 . . . . 5 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → (𝐴 (𝐶 ∩ (𝐴 𝐵))) = 𝐴)
3021, 29eqtrd 2764 . . . 4 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → ((𝐴 𝐶) ∩ (𝐴 𝐵)) = 𝐴)
3130ineq1d 4172 . . 3 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → (((𝐴 𝐶) ∩ (𝐴 𝐵)) ∩ 𝐵) = (𝐴𝐵))
3210, 31eqtrid 2776 . 2 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 𝐵)) → ((𝐴 𝐶) ∩ 𝐵) = (𝐴𝐵))
3332ex 412 1 (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 𝐵) → ((𝐴 𝐶) ∩ 𝐵) = (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905   class class class wbr 5095  (class class class)co 7353   C cch 30891   chj 30895  0c0h 30897  HAtomscat 30927   𝑀 cmd 30928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-ph 30775  df-cbn 30825  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-shs 31270  df-span 31271  df-chj 31272  df-chsup 31273  df-pjh 31357  df-cv 32241  df-md 32242  df-dmd 32243  df-at 32300
This theorem is referenced by:  atabs2i  32364
  Copyright terms: Public domain W3C validator