![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atabsi | Structured version Visualization version GIF version |
Description: Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atabs.1 | ⊢ 𝐴 ∈ Cℋ |
atabs.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
atabsi | ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4212 | . . . 4 ⊢ (((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = ((𝐴 ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) | |
2 | atabs.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
3 | atabs.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Cℋ | |
4 | 2, 3 | chjcomi 31193 | . . . . . . 7 ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
5 | 4 | ineq1i 4201 | . . . . . 6 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) = ((𝐵 ∨ℋ 𝐴) ∩ 𝐵) |
6 | incom 4194 | . . . . . 6 ⊢ ((𝐵 ∨ℋ 𝐴) ∩ 𝐵) = (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) | |
7 | 3, 2 | chabs2i 31244 | . . . . . 6 ⊢ (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵 |
8 | 5, 6, 7 | 3eqtri 2756 | . . . . 5 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵) = 𝐵 |
9 | 8 | ineq2i 4202 | . . . 4 ⊢ ((𝐴 ∨ℋ 𝐶) ∩ ((𝐴 ∨ℋ 𝐵) ∩ 𝐵)) = ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) |
10 | 1, 9 | eqtr2i 2753 | . . 3 ⊢ ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) |
11 | 2, 3 | chub1i 31194 | . . . . . . 7 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
12 | atelch 32069 | . . . . . . . 8 ⊢ (𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) | |
13 | 2, 3 | chjcli 31182 | . . . . . . . . 9 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
14 | atmd 32124 | . . . . . . . . 9 ⊢ ((𝐶 ∈ HAtoms ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) → 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵)) | |
15 | 13, 14 | mpan2 688 | . . . . . . . 8 ⊢ (𝐶 ∈ HAtoms → 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵)) |
16 | mdi 32020 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) | |
17 | 16 | exp32 420 | . . . . . . . . 9 ⊢ ((𝐶 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
18 | 13, 2, 17 | mp3an23 1449 | . . . . . . . 8 ⊢ (𝐶 ∈ Cℋ → (𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) → (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))))) |
19 | 12, 15, 18 | sylc 65 | . . . . . . 7 ⊢ (𝐶 ∈ HAtoms → (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))))) |
20 | 11, 19 | mpi 20 | . . . . . 6 ⊢ (𝐶 ∈ HAtoms → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)))) |
22 | incom 4194 | . . . . . . . 8 ⊢ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) | |
23 | atnssm0 32101 | . . . . . . . . . 10 ⊢ (((𝐴 ∨ℋ 𝐵) ∈ Cℋ ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) = 0ℋ)) | |
24 | 13, 23 | mpan 687 | . . . . . . . . 9 ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) = 0ℋ)) |
25 | 24 | biimpa 476 | . . . . . . . 8 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐴 ∨ℋ 𝐵) ∩ 𝐶) = 0ℋ) |
26 | 22, 25 | eqtrid 2776 | . . . . . . 7 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 0ℋ) |
27 | 26 | oveq2d 7418 | . . . . . 6 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 0ℋ)) |
28 | 2 | chj0i 31180 | . . . . . 6 ⊢ (𝐴 ∨ℋ 0ℋ) = 𝐴 |
29 | 27, 28 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐴 ∨ℋ (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) = 𝐴) |
30 | 21, 29 | eqtrd 2764 | . . . 4 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴) |
31 | 30 | ineq1d 4204 | . . 3 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
32 | 10, 31 | eqtrid 2776 | . 2 ⊢ ((𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
33 | 32 | ex 412 | 1 ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3940 ⊆ wss 3941 class class class wbr 5139 (class class class)co 7402 Cℋ cch 30654 ∨ℋ chj 30658 0ℋc0h 30660 HAtomscat 30690 𝑀ℋ cmd 30691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cc 10427 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 ax-hilex 30724 ax-hfvadd 30725 ax-hvcom 30726 ax-hvass 30727 ax-hv0cl 30728 ax-hvaddid 30729 ax-hfvmul 30730 ax-hvmulid 30731 ax-hvmulass 30732 ax-hvdistr1 30733 ax-hvdistr2 30734 ax-hvmul0 30735 ax-hfi 30804 ax-his1 30807 ax-his2 30808 ax-his3 30809 ax-his4 30810 ax-hcompl 30927 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-acn 9934 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-ioo 13326 df-ico 13328 df-icc 13329 df-fz 13483 df-fzo 13626 df-fl 13755 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-rlim 15431 df-sum 15631 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-rest 17369 df-topn 17370 df-0g 17388 df-gsum 17389 df-topgen 17390 df-pt 17391 df-prds 17394 df-xrs 17449 df-qtop 17454 df-imas 17455 df-xps 17457 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18988 df-cntz 19225 df-cmn 19694 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-fbas 21227 df-fg 21228 df-cnfld 21231 df-top 22720 df-topon 22737 df-topsp 22759 df-bases 22773 df-cld 22847 df-ntr 22848 df-cls 22849 df-nei 22926 df-cn 23055 df-cnp 23056 df-lm 23057 df-haus 23143 df-tx 23390 df-hmeo 23583 df-fil 23674 df-fm 23766 df-flim 23767 df-flf 23768 df-xms 24150 df-ms 24151 df-tms 24152 df-cfil 25107 df-cau 25108 df-cmet 25109 df-grpo 30218 df-gid 30219 df-ginv 30220 df-gdiv 30221 df-ablo 30270 df-vc 30284 df-nv 30317 df-va 30320 df-ba 30321 df-sm 30322 df-0v 30323 df-vs 30324 df-nmcv 30325 df-ims 30326 df-dip 30426 df-ssp 30447 df-ph 30538 df-cbn 30588 df-hnorm 30693 df-hba 30694 df-hvsub 30696 df-hlim 30697 df-hcau 30698 df-sh 30932 df-ch 30946 df-oc 30977 df-ch0 30978 df-shs 31033 df-span 31034 df-chj 31035 df-chsup 31036 df-pjh 31120 df-cv 32004 df-md 32005 df-dmd 32006 df-at 32063 |
This theorem is referenced by: atabs2i 32127 |
Copyright terms: Public domain | W3C validator |