Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mfsdisj | Structured version Visualization version GIF version |
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mfsdisj.c | ⊢ 𝐶 = (mCN‘𝑇) |
mfsdisj.v | ⊢ 𝑉 = (mVR‘𝑇) |
Ref | Expression |
---|---|
mfsdisj | ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mfsdisj.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
2 | mfsdisj.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
3 | eqid 2737 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2737 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2737 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | eqid 2737 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2737 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33617 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 266 | . 2 ⊢ (𝑇 ∈ mFS → (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simplld 765 | 1 ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∩ cin 3895 ⊆ wss 3896 ∅c0 4266 {csn 4569 ◡ccnv 5604 “ cima 5608 ⟶wf 6459 ‘cfv 6463 Fincfn 8779 mCNcmcn 33528 mVRcmvar 33529 mTypecmty 33530 mVTcmvt 33531 mTCcmtc 33532 mAxcmax 33533 mStatcmsta 33543 mFScmfs 33544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 df-mfs 33564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |