Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mfsdisj Structured version   Visualization version   GIF version

Theorem mfsdisj 33618
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mfsdisj.c 𝐶 = (mCN‘𝑇)
mfsdisj.v 𝑉 = (mVR‘𝑇)
Assertion
Ref Expression
mfsdisj (𝑇 ∈ mFS → (𝐶𝑉) = ∅)

Proof of Theorem mfsdisj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mfsdisj.c . . . 4 𝐶 = (mCN‘𝑇)
2 mfsdisj.v . . . 4 𝑉 = (mVR‘𝑇)
3 eqid 2737 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2737 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2737 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2737 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2737 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 33617 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 266 . 2 (𝑇 ∈ mFS → (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simplld 765 1 (𝑇 ∈ mFS → (𝐶𝑉) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  cin 3895  wss 3896  c0 4266  {csn 4569  ccnv 5604  cima 5608  wf 6459  cfv 6463  Fincfn 8779  mCNcmcn 33528  mVRcmvar 33529  mTypecmty 33530  mVTcmvt 33531  mTCcmtc 33532  mAxcmax 33533  mStatcmsta 33543  mFScmfs 33544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-mfs 33564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator