Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mfsdisj | Structured version Visualization version GIF version |
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mfsdisj.c | ⊢ 𝐶 = (mCN‘𝑇) |
mfsdisj.v | ⊢ 𝑉 = (mVR‘𝑇) |
Ref | Expression |
---|---|
mfsdisj | ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mfsdisj.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
2 | mfsdisj.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
3 | eqid 2739 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2739 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2739 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | eqid 2739 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2739 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33386 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 270 | . 2 ⊢ (𝑇 ∈ mFS → (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simplld 768 | 1 ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ∩ cin 3883 ⊆ wss 3884 ∅c0 4254 {csn 4558 ◡ccnv 5578 “ cima 5582 ⟶wf 6411 ‘cfv 6415 Fincfn 8668 mCNcmcn 33297 mVRcmvar 33298 mTypecmty 33299 mVTcmvt 33300 mTCcmtc 33301 mAxcmax 33302 mStatcmsta 33312 mFScmfs 33313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fv 6423 df-mfs 33333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |