| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mfsdisj | Structured version Visualization version GIF version | ||
| Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mfsdisj.c | ⊢ 𝐶 = (mCN‘𝑇) |
| mfsdisj.v | ⊢ 𝑉 = (mVR‘𝑇) |
| Ref | Expression |
|---|---|
| mfsdisj | ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mfsdisj.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
| 2 | mfsdisj.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 3 | eqid 2735 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 4 | eqid 2735 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
| 5 | eqid 2735 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 6 | eqid 2735 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
| 7 | eqid 2735 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35517 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simplld 767 | 1 ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 ◡ccnv 5653 “ cima 5657 ⟶wf 6526 ‘cfv 6530 Fincfn 8957 mCNcmcn 35428 mVRcmvar 35429 mTypecmty 35430 mVTcmvt 35431 mTCcmtc 35432 mAxcmax 35433 mStatcmsta 35443 mFScmfs 35444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-mfs 35464 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |