Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mfsdisj Structured version   Visualization version   GIF version

Theorem mfsdisj 35518
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mfsdisj.c 𝐶 = (mCN‘𝑇)
mfsdisj.v 𝑉 = (mVR‘𝑇)
Assertion
Ref Expression
mfsdisj (𝑇 ∈ mFS → (𝐶𝑉) = ∅)

Proof of Theorem mfsdisj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mfsdisj.c . . . 4 𝐶 = (mCN‘𝑇)
2 mfsdisj.v . . . 4 𝑉 = (mVR‘𝑇)
3 eqid 2740 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2740 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2740 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2740 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2740 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35517 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 267 . 2 (𝑇 ∈ mFS → (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simplld 767 1 (𝑇 ∈ mFS → (𝐶𝑉) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  c0 4352  {csn 4648  ccnv 5699  cima 5703  wf 6569  cfv 6573  Fincfn 9003  mCNcmcn 35428  mVRcmvar 35429  mTypecmty 35430  mVTcmvt 35431  mTCcmtc 35432  mAxcmax 35433  mStatcmsta 35443  mFScmfs 35444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mfs 35464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator