Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mfsdisj Structured version   Visualization version   GIF version

Theorem mfsdisj 35534
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mfsdisj.c 𝐶 = (mCN‘𝑇)
mfsdisj.v 𝑉 = (mVR‘𝑇)
Assertion
Ref Expression
mfsdisj (𝑇 ∈ mFS → (𝐶𝑉) = ∅)

Proof of Theorem mfsdisj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mfsdisj.c . . . 4 𝐶 = (mCN‘𝑇)
2 mfsdisj.v . . . 4 𝑉 = (mVR‘𝑇)
3 eqid 2734 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2734 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2734 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2734 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2734 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35533 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 267 . 2 (𝑇 ∈ mFS → (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simplld 768 1 (𝑇 ∈ mFS → (𝐶𝑉) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  cin 3961  wss 3962  c0 4338  {csn 4630  ccnv 5687  cima 5691  wf 6558  cfv 6562  Fincfn 8983  mCNcmcn 35444  mVRcmvar 35445  mTypecmty 35446  mVTcmvt 35447  mTCcmtc 35448  mAxcmax 35449  mStatcmsta 35459  mFScmfs 35460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-mfs 35480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator