![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mfsdisj | Structured version Visualization version GIF version |
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mfsdisj.c | ⊢ 𝐶 = (mCN‘𝑇) |
mfsdisj.v | ⊢ 𝑉 = (mVR‘𝑇) |
Ref | Expression |
---|---|
mfsdisj | ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mfsdisj.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
2 | mfsdisj.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
3 | eqid 2734 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2734 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2734 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | eqid 2734 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2734 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35533 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → (((𝐶 ∩ 𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simplld 768 | 1 ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 ◡ccnv 5687 “ cima 5691 ⟶wf 6558 ‘cfv 6562 Fincfn 8983 mCNcmcn 35444 mVRcmvar 35445 mTypecmty 35446 mVTcmvt 35447 mTCcmtc 35448 mAxcmax 35449 mStatcmsta 35459 mFScmfs 35460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-mfs 35480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |