Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mfsdisj Structured version   Visualization version   GIF version

Theorem mfsdisj 35510
Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mfsdisj.c 𝐶 = (mCN‘𝑇)
mfsdisj.v 𝑉 = (mVR‘𝑇)
Assertion
Ref Expression
mfsdisj (𝑇 ∈ mFS → (𝐶𝑉) = ∅)

Proof of Theorem mfsdisj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mfsdisj.c . . . 4 𝐶 = (mCN‘𝑇)
2 mfsdisj.v . . . 4 𝑉 = (mVR‘𝑇)
3 eqid 2729 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2729 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2729 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2729 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2729 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35509 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 267 . 2 (𝑇 ∈ mFS → (((𝐶𝑉) = ∅ ∧ (mType‘𝑇):𝑉⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simplld 767 1 (𝑇 ∈ mFS → (𝐶𝑉) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  c0 4292  {csn 4585  ccnv 5630  cima 5634  wf 6495  cfv 6499  Fincfn 8895  mCNcmcn 35420  mVRcmvar 35421  mTypecmty 35422  mVTcmvt 35423  mTCcmtc 35424  mAxcmax 35425  mStatcmsta 35435  mFScmfs 35436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-mfs 35456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator