| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf2 | Structured version Visualization version GIF version | ||
| Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mtyf2.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvtf2.k | ⊢ 𝐾 = (mTC‘𝑇) |
| mtyf2.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mtyf2 | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 2 | mtyf2.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 3 | mtyf2.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
| 4 | eqid 2729 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
| 5 | mvtf2.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
| 6 | eqid 2729 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
| 7 | eqid 2729 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35536 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simplrd 769 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 Fincfn 8918 mCNcmcn 35447 mVRcmvar 35448 mTypecmty 35449 mVTcmvt 35450 mTCcmtc 35451 mAxcmax 35452 mStatcmsta 35462 mFScmfs 35463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-mfs 35483 |
| This theorem is referenced by: mtyf 35539 mvtss 35540 msubff1 35543 mvhf 35545 msubvrs 35547 |
| Copyright terms: Public domain | W3C validator |