Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf2 Structured version   Visualization version   GIF version

Theorem mtyf2 31990
Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf2.v 𝑉 = (mVR‘𝑇)
mvtf2.k 𝐾 = (mTC‘𝑇)
mtyf2.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf2 (𝑇 ∈ mFS → 𝑌:𝑉𝐾)

Proof of Theorem mtyf2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
2 mtyf2.v . . . 4 𝑉 = (mVR‘𝑇)
3 mtyf2.y . . . 4 𝑌 = (mType‘𝑇)
4 eqid 2825 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 mvtf2.k . . . 4 𝐾 = (mTC‘𝑇)
6 eqid 2825 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2825 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 31988 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 259 . 2 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simplrd 786 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  cin 3797  wss 3798  c0 4146  {csn 4399  ccnv 5345  cima 5349  wf 6123  cfv 6127  Fincfn 8228  mCNcmcn 31899  mVRcmvar 31900  mTypecmty 31901  mVTcmvt 31902  mTCcmtc 31903  mAxcmax 31904  mStatcmsta 31914  mFScmfs 31915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-mfs 31935
This theorem is referenced by:  mtyf  31991  mvtss  31992  msubff1  31995  mvhf  31997  msubvrs  31999
  Copyright terms: Public domain W3C validator