Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mtyf2 Structured version   Visualization version   GIF version

Theorem mtyf2 33812
Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mtyf2.v 𝑉 = (mVR‘𝑇)
mvtf2.k 𝐾 = (mTC‘𝑇)
mtyf2.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mtyf2 (𝑇 ∈ mFS → 𝑌:𝑉𝐾)

Proof of Theorem mtyf2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
2 mtyf2.v . . . 4 𝑉 = (mVR‘𝑇)
3 mtyf2.y . . . 4 𝑌 = (mType‘𝑇)
4 eqid 2736 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 mvtf2.k . . . 4 𝐾 = (mTC‘𝑇)
6 eqid 2736 . . . 4 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2736 . . . 4 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 33810 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 266 . 2 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simplrd 767 1 (𝑇 ∈ mFS → 𝑌:𝑉𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  cin 3897  wss 3898  c0 4269  {csn 4573  ccnv 5619  cima 5623  wf 6475  cfv 6479  Fincfn 8804  mCNcmcn 33721  mVRcmvar 33722  mTypecmty 33723  mVTcmvt 33724  mTCcmtc 33725  mAxcmax 33726  mStatcmsta 33736  mFScmfs 33737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fv 6487  df-mfs 33757
This theorem is referenced by:  mtyf  33813  mvtss  33814  msubff1  33817  mvhf  33819  msubvrs  33821
  Copyright terms: Public domain W3C validator