![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf2 | Structured version Visualization version GIF version |
Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf2.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvtf2.k | ⊢ 𝐾 = (mTC‘𝑇) |
mtyf2.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf2 | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | mtyf2.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
3 | mtyf2.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | eqid 2825 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | mvtf2.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
6 | eqid 2825 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2825 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 31988 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 259 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
10 | 9 | simplrd 786 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∩ cin 3797 ⊆ wss 3798 ∅c0 4146 {csn 4399 ◡ccnv 5345 “ cima 5349 ⟶wf 6123 ‘cfv 6127 Fincfn 8228 mCNcmcn 31899 mVRcmvar 31900 mTypecmty 31901 mVTcmvt 31902 mTCcmtc 31903 mAxcmax 31904 mStatcmsta 31914 mFScmfs 31915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-mfs 31935 |
This theorem is referenced by: mtyf 31991 mvtss 31992 msubff1 31995 mvhf 31997 msubvrs 31999 |
Copyright terms: Public domain | W3C validator |