![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf2 | Structured version Visualization version GIF version |
Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf2.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvtf2.k | ⊢ 𝐾 = (mTC‘𝑇) |
mtyf2.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mtyf2 | ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | mtyf2.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
3 | mtyf2.y | . . . 4 ⊢ 𝑌 = (mType‘𝑇) | |
4 | eqid 2736 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | mvtf2.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
6 | eqid 2736 | . . . 4 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2736 | . . . 4 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33810 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 266 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
10 | 9 | simplrd 767 | 1 ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∩ cin 3897 ⊆ wss 3898 ∅c0 4269 {csn 4573 ◡ccnv 5619 “ cima 5623 ⟶wf 6475 ‘cfv 6479 Fincfn 8804 mCNcmcn 33721 mVRcmvar 33722 mTypecmty 33723 mVTcmvt 33724 mTCcmtc 33725 mAxcmax 33726 mStatcmsta 33736 mFScmfs 33737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-mfs 33757 |
This theorem is referenced by: mtyf 33813 mvtss 33814 msubff1 33817 mvhf 33819 msubvrs 33821 |
Copyright terms: Public domain | W3C validator |