![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mtyf2 | Structured version Visualization version GIF version |
Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mtyf2.v | β’ π = (mVRβπ) |
mvtf2.k | β’ πΎ = (mTCβπ) |
mtyf2.y | β’ π = (mTypeβπ) |
Ref | Expression |
---|---|
mtyf2 | β’ (π β mFS β π:πβΆπΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (mCNβπ) = (mCNβπ) | |
2 | mtyf2.v | . . . 4 β’ π = (mVRβπ) | |
3 | mtyf2.y | . . . 4 β’ π = (mTypeβπ) | |
4 | eqid 2732 | . . . 4 β’ (mVTβπ) = (mVTβπ) | |
5 | mvtf2.k | . . . 4 β’ πΎ = (mTCβπ) | |
6 | eqid 2732 | . . . 4 β’ (mAxβπ) = (mAxβπ) | |
7 | eqid 2732 | . . . 4 β’ (mStatβπ) = (mStatβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 34826 | . . 3 β’ (π β mFS β (π β mFS β ((((mCNβπ) β© π) = β β§ π:πβΆπΎ) β§ ((mAxβπ) β (mStatβπ) β§ βπ£ β (mVTβπ) Β¬ (β‘π β {π£}) β Fin)))) |
9 | 8 | ibi 266 | . 2 β’ (π β mFS β ((((mCNβπ) β© π) = β β§ π:πβΆπΎ) β§ ((mAxβπ) β (mStatβπ) β§ βπ£ β (mVTβπ) Β¬ (β‘π β {π£}) β Fin))) |
10 | 9 | simplrd 768 | 1 β’ (π β mFS β π:πβΆπΎ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β© cin 3947 β wss 3948 β c0 4322 {csn 4628 β‘ccnv 5675 β cima 5679 βΆwf 6539 βcfv 6543 Fincfn 8941 mCNcmcn 34737 mVRcmvar 34738 mTypecmty 34739 mVTcmvt 34740 mTCcmtc 34741 mAxcmax 34742 mStatcmsta 34752 mFScmfs 34753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-mfs 34773 |
This theorem is referenced by: mtyf 34829 mvtss 34830 msubff1 34833 mvhf 34835 msubvrs 34837 |
Copyright terms: Public domain | W3C validator |