MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovanraleqv Structured version   Visualization version   GIF version

Theorem ovanraleqv 7429
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1 (𝐵 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
ovanraleqv (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)   𝐶(𝑥)   · (𝑥)   𝑉(𝑥)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3 (𝐵 = 𝑋 → (𝜑𝜓))
2 oveq2 7413 . . . 4 (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋))
32eqeq1d 2737 . . 3 (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶))
41, 3anbi12d 632 . 2 (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
54ralbidv 3163 1 (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3051  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408
This theorem is referenced by:  mgmidmo  18638  ismgmid  18643  ismgmid2  18646  mgmidsssn0  18650  gsumvalx  18654  gsumress  18660  sgrpidmnd  18717  ismndd  18734  mnd1  18757  gsumvallem2  18812  mhmmnd  19047  ringurd  20145  opprring  20307  pzriprnglem7  21448  pzriprnglem13  21454  signsw0g  34588  signswmnd  34589  exidu1  37880  cmpidelt  37883  exidres  37902  exidresid  37903  isrngod  37922  rngoideu  37927  zlidlring  48209  2zrngamnd  48222
  Copyright terms: Public domain W3C validator