| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovanraleqv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| ovanraleqv.1 | ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ovanraleqv | ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovanraleqv.1 | . . 3 ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) | |
| 2 | oveq2 7357 | . . . 4 ⊢ (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋)) | |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| 5 | 4 | ralbidv 3152 | 1 ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: mgmidmo 18534 ismgmid 18539 ismgmid2 18542 mgmidsssn0 18546 gsumvalx 18550 gsumress 18556 sgrpidmnd 18613 ismndd 18630 mnd1 18653 gsumvallem2 18708 mhmmnd 18943 ringurd 20070 opprring 20232 pzriprnglem7 21394 pzriprnglem13 21400 zsoring 28303 signsw0g 34540 signswmnd 34541 exidu1 37856 cmpidelt 37859 exidres 37878 exidresid 37879 isrngod 37898 rngoideu 37903 zlidlring 48238 2zrngamnd 48251 |
| Copyright terms: Public domain | W3C validator |