| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovanraleqv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| ovanraleqv.1 | ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ovanraleqv | ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovanraleqv.1 | . . 3 ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) | |
| 2 | oveq2 7377 | . . . 4 ⊢ (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋)) | |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| 5 | 4 | ralbidv 3156 | 1 ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: mgmidmo 18570 ismgmid 18575 ismgmid2 18578 mgmidsssn0 18582 gsumvalx 18586 gsumress 18592 sgrpidmnd 18649 ismndd 18666 mnd1 18689 gsumvallem2 18744 mhmmnd 18979 ringurd 20106 opprring 20268 pzriprnglem7 21430 pzriprnglem13 21436 zsoring 28337 signsw0g 34541 signswmnd 34542 exidu1 37844 cmpidelt 37847 exidres 37866 exidresid 37867 isrngod 37886 rngoideu 37891 zlidlring 48216 2zrngamnd 48229 |
| Copyright terms: Public domain | W3C validator |