![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovanraleqv | Structured version Visualization version GIF version |
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
ovanraleqv.1 | ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ovanraleqv | ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovanraleqv.1 | . . 3 ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) | |
2 | oveq2 7456 | . . . 4 ⊢ (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋)) | |
3 | 2 | eqeq1d 2742 | . . 3 ⊢ (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶)) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
5 | 4 | ralbidv 3184 | 1 ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: mgmidmo 18698 ismgmid 18703 ismgmid2 18706 mgmidsssn0 18710 gsumvalx 18714 gsumress 18720 sgrpidmnd 18777 ismndd 18794 mnd1 18814 gsumvallem2 18869 mhmmnd 19104 ringurd 20212 opprring 20373 pzriprnglem7 21521 pzriprnglem13 21527 signsw0g 34533 signswmnd 34534 exidu1 37816 cmpidelt 37819 exidres 37838 exidresid 37839 isrngod 37858 rngoideu 37863 zlidlring 47957 2zrngamnd 47970 |
Copyright terms: Public domain | W3C validator |