![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovanraleqv | Structured version Visualization version GIF version |
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
ovanraleqv.1 | ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ovanraleqv | ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovanraleqv.1 | . . 3 ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) | |
2 | oveq2 7422 | . . . 4 ⊢ (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋)) | |
3 | 2 | eqeq1d 2729 | . . 3 ⊢ (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶)) |
4 | 1, 3 | anbi12d 630 | . 2 ⊢ (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
5 | 4 | ralbidv 3172 | 1 ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∀wral 3056 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: mgmidmo 18605 ismgmid 18610 ismgmid2 18613 mgmidsssn0 18617 gsumvalx 18621 gsumress 18627 sgrpidmnd 18684 ismndd 18701 mnd1 18721 gsumvallem2 18771 mhmmnd 19004 ringurd 20109 opprring 20268 pzriprnglem7 21393 pzriprnglem13 21399 signsw0g 34111 signswmnd 34112 exidu1 37251 cmpidelt 37254 exidres 37273 exidresid 37274 isrngod 37293 rngoideu 37298 zlidlring 47209 2zrngamnd 47222 |
Copyright terms: Public domain | W3C validator |