MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovanraleqv Structured version   Visualization version   GIF version

Theorem ovanraleqv 7393
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1 (𝐵 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
ovanraleqv (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)   𝐶(𝑥)   · (𝑥)   𝑉(𝑥)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3 (𝐵 = 𝑋 → (𝜑𝜓))
2 oveq2 7377 . . . 4 (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋))
32eqeq1d 2731 . . 3 (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶))
41, 3anbi12d 632 . 2 (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
54ralbidv 3156 1 (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3044  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  mgmidmo  18570  ismgmid  18575  ismgmid2  18578  mgmidsssn0  18582  gsumvalx  18586  gsumress  18592  sgrpidmnd  18649  ismndd  18666  mnd1  18689  gsumvallem2  18744  mhmmnd  18979  ringurd  20106  opprring  20268  pzriprnglem7  21430  pzriprnglem13  21436  zsoring  28337  signsw0g  34541  signswmnd  34542  exidu1  37844  cmpidelt  37847  exidres  37866  exidresid  37867  isrngod  37886  rngoideu  37891  zlidlring  48216  2zrngamnd  48229
  Copyright terms: Public domain W3C validator