Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovanraleqv | Structured version Visualization version GIF version |
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
ovanraleqv.1 | ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ovanraleqv | ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovanraleqv.1 | . . 3 ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) | |
2 | oveq2 7279 | . . . 4 ⊢ (𝐵 = 𝑋 → (𝐴 · 𝐵) = (𝐴 · 𝑋)) | |
3 | 2 | eqeq1d 2742 | . . 3 ⊢ (𝐵 = 𝑋 → ((𝐴 · 𝐵) = 𝐶 ↔ (𝐴 · 𝑋) = 𝐶)) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ (𝐵 = 𝑋 → ((𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
5 | 4 | ralbidv 3123 | 1 ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∀wral 3066 (class class class)co 7271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7274 |
This theorem is referenced by: mgmidmo 18342 ismgmid 18347 ismgmid2 18350 mgmidsssn0 18354 gsumvalx 18358 gsumress 18364 sgrpidmnd 18388 ismndd 18405 mnd1 18424 gsumvallem2 18470 mhmmnd 18695 rngurd 31478 signsw0g 32531 signswmnd 32532 exidu1 36010 cmpidelt 36013 exidres 36032 exidresid 36033 isrngod 36052 rngoideu 36057 zlidlring 45455 2zrngamnd 45468 |
Copyright terms: Public domain | W3C validator |