MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opifismgm Structured version   Visualization version   GIF version

Theorem opifismgm 17738
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b 𝐵 = (Base‘𝑀)
opifismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
opifismgm.n (𝜑𝐵 ≠ ∅)
opifismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
opifismgm.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
Assertion
Ref Expression
opifismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opifismgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
2 opifismgm.d . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
31, 2ifcld 4389 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
43ralrimivva 3134 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
54adantr 473 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
6 simprl 759 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
7 simprr 761 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
8 opifismgm.p . . . . 5 (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
98ovmpoelrn 7576 . . . 4 ((∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
105, 6, 7, 9syl3anc 1352 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
1110ralrimivva 3134 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
12 opifismgm.n . . 3 (𝜑𝐵 ≠ ∅)
13 n0 4190 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
14 opifismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
15 eqid 2771 . . . . . 6 (+g𝑀) = (+g𝑀)
1614, 15ismgmn0 17724 . . . . 5 (𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1716exlimiv 1890 . . . 4 (∃𝑥 𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1813, 17sylbi 209 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1912, 18syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
2011, 19mpbird 249 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wex 1743  wcel 2051  wne 2960  wral 3081  c0 4172  ifcif 4344  cfv 6185  (class class class)co 6974  cmpo 6976  Basecbs 16337  +gcplusg 16419  Mgmcmgm 17720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-mgm 17722
This theorem is referenced by:  mgm2nsgrplem1  17886  sgrp2nmndlem1  17891
  Copyright terms: Public domain W3C validator