| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opifismgm | Structured version Visualization version GIF version | ||
| Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
| Ref | Expression |
|---|---|
| opifismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
| opifismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) |
| opifismgm.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| opifismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| opifismgm.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opifismgm | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opifismgm.c | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
| 2 | opifismgm.d | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) | |
| 3 | 1, 2 | ifcld 4531 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 4 | 3 | ralrimivva 3178 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 6 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
| 7 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
| 8 | opifismgm.p | . . . . 5 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) | |
| 9 | 8 | ovmpoelrn 8030 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 10 | 5, 6, 7, 9 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 11 | 10 | ralrimivva 3178 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 12 | opifismgm.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 13 | n0 4312 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 14 | opifismgm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 16 | 14, 15 | ismgmn0 18551 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 17 | 16 | exlimiv 1930 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 18 | 13, 17 | sylbi 217 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 20 | 11, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4292 ifcif 4484 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 +gcplusg 17196 Mgmcmgm 18547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-mgm 18549 |
| This theorem is referenced by: mgm2nsgrplem1 18827 sgrp2nmndlem1 18832 |
| Copyright terms: Public domain | W3C validator |