![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opifismgm | Structured version Visualization version GIF version |
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
Ref | Expression |
---|---|
opifismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
opifismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) |
opifismgm.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
opifismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
opifismgm.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) |
Ref | Expression |
---|---|
opifismgm | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opifismgm.c | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
2 | opifismgm.d | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) | |
3 | 1, 2 | ifcld 4577 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
4 | 3 | ralrimivva 3200 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
6 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
7 | simprr 773 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
8 | opifismgm.p | . . . . 5 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) | |
9 | 8 | ovmpoelrn 8096 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
10 | 5, 6, 7, 9 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
11 | 10 | ralrimivva 3200 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
12 | opifismgm.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
13 | n0 4359 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
14 | opifismgm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
15 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
16 | 14, 15 | ismgmn0 18668 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
17 | 16 | exlimiv 1928 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
18 | 13, 17 | sylbi 217 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
19 | 12, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
20 | 11, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 ifcif 4531 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 +gcplusg 17298 Mgmcmgm 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-mgm 18666 |
This theorem is referenced by: mgm2nsgrplem1 18944 sgrp2nmndlem1 18949 |
Copyright terms: Public domain | W3C validator |