MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opifismgm Structured version   Visualization version   GIF version

Theorem opifismgm 18672
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b 𝐵 = (Base‘𝑀)
opifismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
opifismgm.n (𝜑𝐵 ≠ ∅)
opifismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
opifismgm.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
Assertion
Ref Expression
opifismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opifismgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
2 opifismgm.d . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
31, 2ifcld 4572 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
43ralrimivva 3202 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
54adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
6 simprl 771 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
7 simprr 773 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
8 opifismgm.p . . . . 5 (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
98ovmpoelrn 8097 . . . 4 ((∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
105, 6, 7, 9syl3anc 1373 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
1110ralrimivva 3202 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
12 opifismgm.n . . 3 (𝜑𝐵 ≠ ∅)
13 n0 4353 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
14 opifismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
15 eqid 2737 . . . . . 6 (+g𝑀) = (+g𝑀)
1614, 15ismgmn0 18655 . . . . 5 (𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1716exlimiv 1930 . . . 4 (∃𝑥 𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1813, 17sylbi 217 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1912, 18syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
2011, 19mpbird 257 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  c0 4333  ifcif 4525  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-mgm 18653
This theorem is referenced by:  mgm2nsgrplem1  18931  sgrp2nmndlem1  18936
  Copyright terms: Public domain W3C validator