![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version |
Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnflt0 | ⊢ -∞ < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | mnflt 13163 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 0cc0 11153 -∞cmnf 11291 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 |
This theorem is referenced by: ge0gtmnf 13211 xsubge0 13300 sgnmnf 15131 leordtval2 23236 mnfnei 23245 ovolicopnf 25573 voliunlem3 25601 volsup 25605 volivth 25656 itg2seq 25792 itg2monolem2 25801 deg1lt0 26145 plypf1 26266 xrge00 33000 dvasin 37691 readvrec2 42370 readvrec 42371 hbtlem5 43117 xrge0nemnfd 45282 xrpnf 45436 fourierdlem87 46149 fouriersw 46187 gsumge0cl 46327 sge0pr 46350 sge0ssre 46353 |
Copyright terms: Public domain | W3C validator |