| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnflt0 | ⊢ -∞ < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11237 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | mnflt 13139 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 0cc0 11129 -∞cmnf 11267 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 |
| This theorem is referenced by: ge0gtmnf 13188 xsubge0 13277 sgnmnf 15114 leordtval2 23150 mnfnei 23159 ovolicopnf 25477 voliunlem3 25505 volsup 25509 volivth 25560 itg2seq 25695 itg2monolem2 25704 deg1lt0 26048 plypf1 26169 xrge00 33007 dvasin 37728 readvrec2 42404 readvrec 42405 hbtlem5 43152 xrge0nemnfd 45359 xrpnf 45512 fourierdlem87 46222 fouriersw 46260 gsumge0cl 46400 sge0pr 46423 sge0ssre 46426 |
| Copyright terms: Public domain | W3C validator |