![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version |
Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnflt0 | ⊢ -∞ < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10358 | . 2 ⊢ 0 ∈ ℝ | |
2 | mnflt 12243 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2166 class class class wbr 4873 ℝcr 10251 0cc0 10252 -∞cmnf 10389 < clt 10391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-1cn 10310 ax-addrcl 10313 ax-rnegex 10323 ax-cnre 10325 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 |
This theorem is referenced by: ge0gtmnf 12291 xsubge0 12379 xrge0neqmnfOLD 12566 sgnmnf 14212 leordtval2 21387 mnfnei 21396 ovolicopnf 23690 voliunlem3 23718 volsup 23722 volivth 23773 itg2seq 23908 itg2monolem2 23917 deg1lt0 24250 plypf1 24367 xrge00 30231 dvasin 34039 hbtlem5 38541 xrge0nemnfd 40345 xrpnf 40510 fourierdlem87 41204 fouriersw 41242 gsumge0cl 41379 sge0pr 41402 sge0ssre 41405 |
Copyright terms: Public domain | W3C validator |