| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnflt0 | ⊢ -∞ < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11121 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | mnflt 13024 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 class class class wbr 5093 ℝcr 11012 0cc0 11013 -∞cmnf 11151 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addrcl 11074 ax-rnegex 11084 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 |
| This theorem is referenced by: ge0gtmnf 13073 xsubge0 13162 sgnmnf 15004 leordtval2 23128 mnfnei 23137 ovolicopnf 25453 voliunlem3 25481 volsup 25485 volivth 25536 itg2seq 25671 itg2monolem2 25680 deg1lt0 26024 plypf1 26145 xrge00 33002 dvasin 37764 readvrec2 42479 readvrec 42480 hbtlem5 43245 xrge0nemnfd 45455 xrpnf 45607 fourierdlem87 46315 fouriersw 46353 gsumge0cl 46493 sge0pr 46516 sge0ssre 46519 |
| Copyright terms: Public domain | W3C validator |