Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version |
Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnflt0 | ⊢ -∞ < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | mnflt 12788 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 -∞cmnf 10938 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: ge0gtmnf 12835 xsubge0 12924 sgnmnf 14734 leordtval2 22271 mnfnei 22280 ovolicopnf 24593 voliunlem3 24621 volsup 24625 volivth 24676 itg2seq 24812 itg2monolem2 24821 deg1lt0 25161 plypf1 25278 xrge00 31197 dvasin 35788 hbtlem5 40869 xrge0nemnfd 42761 xrpnf 42916 fourierdlem87 43624 fouriersw 43662 gsumge0cl 43799 sge0pr 43822 sge0ssre 43825 |
Copyright terms: Public domain | W3C validator |