![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version |
Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnflt0 | ⊢ -∞ < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | mnflt 13186 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 -∞cmnf 11322 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: ge0gtmnf 13234 xsubge0 13323 sgnmnf 15144 leordtval2 23241 mnfnei 23250 ovolicopnf 25578 voliunlem3 25606 volsup 25610 volivth 25661 itg2seq 25797 itg2monolem2 25806 deg1lt0 26150 plypf1 26271 xrge00 32998 dvasin 37664 hbtlem5 43085 xrge0nemnfd 45247 xrpnf 45401 fourierdlem87 46114 fouriersw 46152 gsumge0cl 46292 sge0pr 46315 sge0ssre 46318 |
Copyright terms: Public domain | W3C validator |