| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnflt0 | ⊢ -∞ < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11136 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | mnflt 13043 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 -∞cmnf 11166 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 |
| This theorem is referenced by: ge0gtmnf 13092 xsubge0 13181 sgnmnf 15020 leordtval2 23115 mnfnei 23124 ovolicopnf 25441 voliunlem3 25469 volsup 25473 volivth 25524 itg2seq 25659 itg2monolem2 25668 deg1lt0 26012 plypf1 26133 xrge00 32981 dvasin 37683 readvrec2 42334 readvrec 42335 hbtlem5 43101 xrge0nemnfd 45312 xrpnf 45465 fourierdlem87 46175 fouriersw 46213 gsumge0cl 46353 sge0pr 46376 sge0ssre 46379 |
| Copyright terms: Public domain | W3C validator |