| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt0 | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnflt0 | ⊢ -∞ < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11111 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | mnflt 13019 | . 2 ⊢ (0 ∈ ℝ → -∞ < 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -∞ < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5091 ℝcr 11002 0cc0 11003 -∞cmnf 11141 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addrcl 11064 ax-rnegex 11074 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 |
| This theorem is referenced by: ge0gtmnf 13068 xsubge0 13157 sgnmnf 14999 leordtval2 23125 mnfnei 23134 ovolicopnf 25450 voliunlem3 25478 volsup 25482 volivth 25533 itg2seq 25668 itg2monolem2 25677 deg1lt0 26021 plypf1 26142 xrge00 32990 dvasin 37743 readvrec2 42393 readvrec 42394 hbtlem5 43160 xrge0nemnfd 45370 xrpnf 45522 fourierdlem87 46230 fouriersw 46268 gsumge0cl 46408 sge0pr 46431 sge0ssre 46434 |
| Copyright terms: Public domain | W3C validator |