MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcnfimad Structured version   Visualization version   GIF version

Theorem mptcnfimad 8010
Description: The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025.)
Hypotheses
Ref Expression
mptcnfimad.m 𝑀 = (𝑥𝐴 ↦ (𝐹𝑥))
mptcnfimad.f (𝜑𝐹:𝑉1-1-onto𝑊)
mptcnfimad.a (𝜑𝐴 ⊆ 𝒫 𝑉)
mptcnfimad.r (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊)
mptcnfimad.v (𝜑𝑉𝑈)
Assertion
Ref Expression
mptcnfimad (𝜑𝑀 = (𝑦 ∈ ran 𝑀 ↦ (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mptcnfimad
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mptcnfimad.m . . 3 𝑀 = (𝑥𝐴 ↦ (𝐹𝑥))
21cnveqi 5888 . 2 𝑀 = (𝑥𝐴 ↦ (𝐹𝑥))
3 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 mptcnfimad.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉1-1-onto𝑊)
5 f1of 6849 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉𝑊)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑉𝑊)
7 mptcnfimad.v . . . . . . . . . . 11 (𝜑𝑉𝑈)
86, 7fexd 7247 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
98imaexd 7939 . . . . . . . . 9 (𝜑 → (𝐹𝑥) ∈ V)
109adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ V)
111, 3, 10elrnmpt1d 5978 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ran 𝑀)
12 f1of1 6848 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
134, 12syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝑊)
14 mptcnfimad.a . . . . . . . . . 10 (𝜑𝐴 ⊆ 𝒫 𝑉)
15 ssel 3989 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 𝑉 → (𝑥𝐴𝑥 ∈ 𝒫 𝑉))
16 elpwi 4612 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
1715, 16syl6 35 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 𝑉 → (𝑥𝐴𝑥𝑉))
1814, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑉))
1918imp 406 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝑉)
20 f1imacnv 6865 . . . . . . . . 9 ((𝐹:𝑉1-1𝑊𝑥𝑉) → (𝐹 “ (𝐹𝑥)) = 𝑥)
2120eqcomd 2741 . . . . . . . 8 ((𝐹:𝑉1-1𝑊𝑥𝑉) → 𝑥 = (𝐹 “ (𝐹𝑥)))
2213, 19, 21syl2an2r 685 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 = (𝐹 “ (𝐹𝑥)))
2311, 22jca 511 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ ran 𝑀𝑥 = (𝐹 “ (𝐹𝑥))))
24 eleq1 2827 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝑀 ↔ (𝐹𝑥) ∈ ran 𝑀))
25 imaeq2 6076 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝐹𝑦) = (𝐹 “ (𝐹𝑥)))
2625eqeq2d 2746 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (𝐹 “ (𝐹𝑥))))
2724, 26anbi12d 632 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝑦 ∈ ran 𝑀𝑥 = (𝐹𝑦)) ↔ ((𝐹𝑥) ∈ ran 𝑀𝑥 = (𝐹 “ (𝐹𝑥)))))
2823, 27syl5ibrcom 247 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝑀𝑥 = (𝐹𝑦))))
2928expimpd 453 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = (𝐹𝑥)) → (𝑦 ∈ ran 𝑀𝑥 = (𝐹𝑦))))
3010ralrimiva 3144 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ V)
311fnmpt 6709 . . . . . . . . . . 11 (∀𝑥𝐴 (𝐹𝑥) ∈ V → 𝑀 Fn 𝐴)
3230, 31syl 17 . . . . . . . . . 10 (𝜑𝑀 Fn 𝐴)
33 fvelrnb 6969 . . . . . . . . . 10 (𝑀 Fn 𝐴 → (𝑦 ∈ ran 𝑀 ↔ ∃𝑥𝐴 (𝑀𝑥) = 𝑦))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ran 𝑀 ↔ ∃𝑥𝐴 (𝑀𝑥) = 𝑦))
35 imaeq2 6076 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
3635cbvmptv 5261 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑧𝐴 ↦ (𝐹𝑧))
371, 36eqtri 2763 . . . . . . . . . . . . . 14 𝑀 = (𝑧𝐴 ↦ (𝐹𝑧))
3837a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑀 = (𝑧𝐴 ↦ (𝐹𝑧)))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
4039imaeq2d 6080 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑧 = 𝑥) → (𝐹𝑧) = (𝐹𝑥))
4138, 40, 3, 10fvmptd 7023 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑀𝑥) = (𝐹𝑥))
4241eqeq1d 2737 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑀𝑥) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
4325eqcoms 2743 . . . . . . . . . . . . . 14 ((𝐹𝑥) = 𝑦 → (𝐹𝑦) = (𝐹 “ (𝐹𝑥)))
4443adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑦) = (𝐹 “ (𝐹𝑥)))
4513, 19, 20syl2an2r 685 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4645, 3eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐹 “ (𝐹𝑥)) ∈ 𝐴)
4746adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) = 𝑦) → (𝐹 “ (𝐹𝑥)) ∈ 𝐴)
4844, 47eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑦) ∈ 𝐴)
4948ex 412 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦 → (𝐹𝑦) ∈ 𝐴))
5042, 49sylbid 240 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑀𝑥) = 𝑦 → (𝐹𝑦) ∈ 𝐴))
5150rexlimdva 3153 . . . . . . . . 9 (𝜑 → (∃𝑥𝐴 (𝑀𝑥) = 𝑦 → (𝐹𝑦) ∈ 𝐴))
5234, 51sylbid 240 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran 𝑀 → (𝐹𝑦) ∈ 𝐴))
5352imp 406 . . . . . . 7 ((𝜑𝑦 ∈ ran 𝑀) → (𝐹𝑦) ∈ 𝐴)
54 f1ofo 6856 . . . . . . . . . 10 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉onto𝑊)
554, 54syl 17 . . . . . . . . 9 (𝜑𝐹:𝑉onto𝑊)
56 mptcnfimad.r . . . . . . . . . . 11 (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊)
57 ssel 3989 . . . . . . . . . . . 12 (ran 𝑀 ⊆ 𝒫 𝑊 → (𝑦 ∈ ran 𝑀𝑦 ∈ 𝒫 𝑊))
58 elpwi 4612 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑊𝑦𝑊)
5957, 58syl6 35 . . . . . . . . . . 11 (ran 𝑀 ⊆ 𝒫 𝑊 → (𝑦 ∈ ran 𝑀𝑦𝑊))
6056, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ran 𝑀𝑦𝑊))
6160imp 406 . . . . . . . . 9 ((𝜑𝑦 ∈ ran 𝑀) → 𝑦𝑊)
62 foimacnv 6866 . . . . . . . . 9 ((𝐹:𝑉onto𝑊𝑦𝑊) → (𝐹 “ (𝐹𝑦)) = 𝑦)
6355, 61, 62syl2an2r 685 . . . . . . . 8 ((𝜑𝑦 ∈ ran 𝑀) → (𝐹 “ (𝐹𝑦)) = 𝑦)
6463eqcomd 2741 . . . . . . 7 ((𝜑𝑦 ∈ ran 𝑀) → 𝑦 = (𝐹 “ (𝐹𝑦)))
6553, 64jca 511 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑀) → ((𝐹𝑦) ∈ 𝐴𝑦 = (𝐹 “ (𝐹𝑦))))
66 eleq1 2827 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝑥𝐴 ↔ (𝐹𝑦) ∈ 𝐴))
67 imaeq2 6076 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
6867eqeq2d 2746 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (𝐹 “ (𝐹𝑦))))
6966, 68anbi12d 632 . . . . . 6 (𝑥 = (𝐹𝑦) → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ ((𝐹𝑦) ∈ 𝐴𝑦 = (𝐹 “ (𝐹𝑦)))))
7065, 69syl5ibrcom 247 . . . . 5 ((𝜑𝑦 ∈ ran 𝑀) → (𝑥 = (𝐹𝑦) → (𝑥𝐴𝑦 = (𝐹𝑥))))
7170expimpd 453 . . . 4 (𝜑 → ((𝑦 ∈ ran 𝑀𝑥 = (𝐹𝑦)) → (𝑥𝐴𝑦 = (𝐹𝑥))))
7229, 71impbid 212 . . 3 (𝜑 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑦 ∈ ran 𝑀𝑥 = (𝐹𝑦))))
7372mptcnv 6162 . 2 (𝜑(𝑥𝐴 ↦ (𝐹𝑥)) = (𝑦 ∈ ran 𝑀 ↦ (𝐹𝑦)))
742, 73eqtrid 2787 1 (𝜑𝑀 = (𝑦 ∈ ran 𝑀 ↦ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963  𝒫 cpw 4605  cmpt 5231  ccnv 5688  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  uspgrimprop  47811
  Copyright terms: Public domain W3C validator