Step | Hyp | Ref
| Expression |
1 | | mptcnfimad.m |
. . 3
⊢ 𝑀 = (𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) |
2 | 1 | cnveqi 5877 |
. 2
⊢ ◡𝑀 = ◡(𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) |
3 | | simpr 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
4 | | mptcnfimad.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) |
5 | | f1of 6838 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉⟶𝑊) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑉⟶𝑊) |
7 | | mptcnfimad.v |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ 𝑈) |
8 | 6, 7 | fexd 7239 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
9 | 8 | imaexd 7924 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ 𝑥) ∈ V) |
10 | 9 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 “ 𝑥) ∈ V) |
11 | 1, 3, 10 | elrnmpt1d 5964 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 “ 𝑥) ∈ ran 𝑀) |
12 | | f1of1 6837 |
. . . . . . . . 9
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
13 | 4, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑉–1-1→𝑊) |
14 | | mptcnfimad.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) |
15 | | ssel 3970 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝒫 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝑉)) |
16 | | elpwi 4611 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑉 → 𝑥 ⊆ 𝑉) |
17 | 15, 16 | syl6 35 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝒫 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉)) |
18 | 14, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉)) |
19 | 18 | imp 405 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝑉) |
20 | | f1imacnv 6854 |
. . . . . . . . 9
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑥 ⊆ 𝑉) → (◡𝐹 “ (𝐹 “ 𝑥)) = 𝑥) |
21 | 20 | eqcomd 2731 |
. . . . . . . 8
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑥 ⊆ 𝑉) → 𝑥 = (◡𝐹 “ (𝐹 “ 𝑥))) |
22 | 13, 19, 21 | syl2an2r 683 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (◡𝐹 “ (𝐹 “ 𝑥))) |
23 | 11, 22 | jca 510 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 “ 𝑥) ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ (𝐹 “ 𝑥)))) |
24 | | eleq1 2813 |
. . . . . . 7
⊢ (𝑦 = (𝐹 “ 𝑥) → (𝑦 ∈ ran 𝑀 ↔ (𝐹 “ 𝑥) ∈ ran 𝑀)) |
25 | | imaeq2 6060 |
. . . . . . . 8
⊢ (𝑦 = (𝐹 “ 𝑥) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝐹 “ 𝑥))) |
26 | 25 | eqeq2d 2736 |
. . . . . . 7
⊢ (𝑦 = (𝐹 “ 𝑥) → (𝑥 = (◡𝐹 “ 𝑦) ↔ 𝑥 = (◡𝐹 “ (𝐹 “ 𝑥)))) |
27 | 24, 26 | anbi12d 630 |
. . . . . 6
⊢ (𝑦 = (𝐹 “ 𝑥) → ((𝑦 ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ 𝑦)) ↔ ((𝐹 “ 𝑥) ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ (𝐹 “ 𝑥))))) |
28 | 23, 27 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹 “ 𝑥) → (𝑦 ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ 𝑦)))) |
29 | 28 | expimpd 452 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹 “ 𝑥)) → (𝑦 ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ 𝑦)))) |
30 | 10 | ralrimiva 3135 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹 “ 𝑥) ∈ V) |
31 | 1 | fnmpt 6696 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 (𝐹 “ 𝑥) ∈ V → 𝑀 Fn 𝐴) |
32 | 30, 31 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 Fn 𝐴) |
33 | | fvelrnb 6958 |
. . . . . . . . . 10
⊢ (𝑀 Fn 𝐴 → (𝑦 ∈ ran 𝑀 ↔ ∃𝑥 ∈ 𝐴 (𝑀‘𝑥) = 𝑦)) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ran 𝑀 ↔ ∃𝑥 ∈ 𝐴 (𝑀‘𝑥) = 𝑦)) |
35 | | imaeq2 6060 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝐹 “ 𝑥) = (𝐹 “ 𝑧)) |
36 | 35 | cbvmptv 5262 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) = (𝑧 ∈ 𝐴 ↦ (𝐹 “ 𝑧)) |
37 | 1, 36 | eqtri 2753 |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (𝑧 ∈ 𝐴 ↦ (𝐹 “ 𝑧)) |
38 | 37 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 = (𝑧 ∈ 𝐴 ↦ (𝐹 “ 𝑧))) |
39 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥) |
40 | 39 | imaeq2d 6064 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝑥) → (𝐹 “ 𝑧) = (𝐹 “ 𝑥)) |
41 | 38, 40, 3, 10 | fvmptd 7011 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝑥) = (𝐹 “ 𝑥)) |
42 | 41 | eqeq1d 2727 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑀‘𝑥) = 𝑦 ↔ (𝐹 “ 𝑥) = 𝑦)) |
43 | 25 | eqcoms 2733 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ 𝑥) = 𝑦 → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝐹 “ 𝑥))) |
44 | 43 | adantl 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹 “ 𝑥) = 𝑦) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝐹 “ 𝑥))) |
45 | 13, 19, 20 | syl2an2r 683 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ (𝐹 “ 𝑥)) = 𝑥) |
46 | 45, 3 | eqeltrd 2825 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ (𝐹 “ 𝑥)) ∈ 𝐴) |
47 | 46 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹 “ 𝑥) = 𝑦) → (◡𝐹 “ (𝐹 “ 𝑥)) ∈ 𝐴) |
48 | 44, 47 | eqeltrd 2825 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹 “ 𝑥) = 𝑦) → (◡𝐹 “ 𝑦) ∈ 𝐴) |
49 | 48 | ex 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 “ 𝑥) = 𝑦 → (◡𝐹 “ 𝑦) ∈ 𝐴)) |
50 | 42, 49 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑀‘𝑥) = 𝑦 → (◡𝐹 “ 𝑦) ∈ 𝐴)) |
51 | 50 | rexlimdva 3144 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝑀‘𝑥) = 𝑦 → (◡𝐹 “ 𝑦) ∈ 𝐴)) |
52 | 34, 51 | sylbid 239 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ran 𝑀 → (◡𝐹 “ 𝑦) ∈ 𝐴)) |
53 | 52 | imp 405 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → (◡𝐹 “ 𝑦) ∈ 𝐴) |
54 | | f1ofo 6845 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–onto→𝑊) |
55 | 4, 54 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑉–onto→𝑊) |
56 | | mptcnfimad.r |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 𝑊) |
57 | | ssel 3970 |
. . . . . . . . . . . 12
⊢ (ran
𝑀 ⊆ 𝒫 𝑊 → (𝑦 ∈ ran 𝑀 → 𝑦 ∈ 𝒫 𝑊)) |
58 | | elpwi 4611 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 𝑊 → 𝑦 ⊆ 𝑊) |
59 | 57, 58 | syl6 35 |
. . . . . . . . . . 11
⊢ (ran
𝑀 ⊆ 𝒫 𝑊 → (𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊)) |
60 | 56, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊)) |
61 | 60 | imp 405 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → 𝑦 ⊆ 𝑊) |
62 | | foimacnv 6855 |
. . . . . . . . 9
⊢ ((𝐹:𝑉–onto→𝑊 ∧ 𝑦 ⊆ 𝑊) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
63 | 55, 61, 62 | syl2an2r 683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
64 | 63 | eqcomd 2731 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))) |
65 | 53, 64 | jca 510 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → ((◡𝐹 “ 𝑦) ∈ 𝐴 ∧ 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦)))) |
66 | | eleq1 2813 |
. . . . . . 7
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑥 ∈ 𝐴 ↔ (◡𝐹 “ 𝑦) ∈ 𝐴)) |
67 | | imaeq2 6060 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) |
68 | 67 | eqeq2d 2736 |
. . . . . . 7
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑦 = (𝐹 “ 𝑥) ↔ 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦)))) |
69 | 66, 68 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹 “ 𝑥)) ↔ ((◡𝐹 “ 𝑦) ∈ 𝐴 ∧ 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))))) |
70 | 65, 69 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑀) → (𝑥 = (◡𝐹 “ 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹 “ 𝑥)))) |
71 | 70 | expimpd 452 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ 𝑦)) → (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹 “ 𝑥)))) |
72 | 29, 71 | impbid 211 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹 “ 𝑥)) ↔ (𝑦 ∈ ran 𝑀 ∧ 𝑥 = (◡𝐹 “ 𝑦)))) |
73 | 72 | mptcnv 6146 |
. 2
⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ (𝐹 “ 𝑥)) = (𝑦 ∈ ran 𝑀 ↦ (◡𝐹 “ 𝑦))) |
74 | 2, 73 | eqtrid 2777 |
1
⊢ (𝜑 → ◡𝑀 = (𝑦 ∈ ran 𝑀 ↦ (◡𝐹 “ 𝑦))) |