MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfzshft Structured version   Visualization version   GIF version

Theorem mptfzshft 15490
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 15492. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1 (𝜑𝐾 ∈ ℤ)
mptfzshft.2 (𝜑𝑀 ∈ ℤ)
mptfzshft.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
mptfzshft (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁   𝜑,𝑗

Proof of Theorem mptfzshft
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ovex 7308 . . . 4 (𝑗𝐾) ∈ V
2 eqid 2738 . . . 4 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾))
31, 2fnmpti 6576 . . 3 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾))
43a1i 11 . 2 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
5 ovex 7308 . . . 4 (𝑘 + 𝐾) ∈ V
6 eqid 2738 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾))
75, 6fnmpti 6576 . . 3 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)
8 simprr 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 = (𝑗𝐾))
98oveq1d 7290 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) = ((𝑗𝐾) + 𝐾))
10 elfzelz 13256 . . . . . . . . . . . 12 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ)
1110ad2antrl 725 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ℤ)
12 mptfzshft.1 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1312adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝐾 ∈ ℤ)
14 zcn 12324 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
15 zcn 12324 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
16 npcan 11230 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1714, 15, 16syl2an 596 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1811, 13, 17syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → ((𝑗𝐾) + 𝐾) = 𝑗)
199, 18eqtr2d 2779 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 = (𝑘 + 𝐾))
20 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2119, 20eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
22 mptfzshft.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
2322adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑀 ∈ ℤ)
24 mptfzshft.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2524adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑁 ∈ ℤ)
2611, 13zsubcld 12431 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑗𝐾) ∈ ℤ)
278, 26eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ ℤ)
28 fzaddel 13290 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
2923, 25, 27, 13, 28syl22anc 836 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3021, 29mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3130, 19jca 512 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))
32 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾))
33 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3422adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ)
3524adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ)
36 elfzelz 13256 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
3736ad2antrl 725 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ)
3812adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ)
3934, 35, 37, 38, 28syl22anc 836 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4033, 39mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4132, 40eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4232oveq1d 7290 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗𝐾) = ((𝑘 + 𝐾) − 𝐾))
43 zcn 12324 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
44 pncan 11227 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4543, 15, 44syl2an 596 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4637, 38, 45syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4742, 46eqtr2d 2779 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗𝐾))
4841, 47jca 512 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)))
4931, 48impbida 798 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))))
5049mptcnv 6043 . . . 4 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)))
5150fneq1d 6526 . . 3 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁) ↔ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)))
527, 51mpbiri 257 . 2 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁))
53 dff1o4 6724 . 2 ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁) ↔ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁)))
544, 52, 53sylanbrc 583 1 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cmpt 5157  ccnv 5588   Fn wfn 6428  1-1-ontowf1o 6432  (class class class)co 7275  cc 10869   + caddc 10874  cmin 11205  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fsumshft  15492  fprodshft  15686  gsummptshft  19537
  Copyright terms: Public domain W3C validator