MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfzshft Structured version   Visualization version   GIF version

Theorem mptfzshft 14797
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 14799. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1 (𝜑𝐾 ∈ ℤ)
mptfzshft.2 (𝜑𝑀 ∈ ℤ)
mptfzshft.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
mptfzshft (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁   𝜑,𝑗

Proof of Theorem mptfzshft
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ovex 6876 . . . 4 (𝑗𝐾) ∈ V
2 eqid 2765 . . . 4 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾))
31, 2fnmpti 6202 . . 3 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾))
43a1i 11 . 2 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
5 ovex 6876 . . . 4 (𝑘 + 𝐾) ∈ V
6 eqid 2765 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾))
75, 6fnmpti 6202 . . 3 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)
8 simprr 789 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 = (𝑗𝐾))
98oveq1d 6859 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) = ((𝑗𝐾) + 𝐾))
10 elfzelz 12552 . . . . . . . . . . . 12 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ)
1110ad2antrl 719 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ℤ)
12 mptfzshft.1 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1312adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝐾 ∈ ℤ)
14 zcn 11631 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
15 zcn 11631 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
16 npcan 10546 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1714, 15, 16syl2an 589 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1811, 13, 17syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → ((𝑗𝐾) + 𝐾) = 𝑗)
199, 18eqtr2d 2800 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 = (𝑘 + 𝐾))
20 simprl 787 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2119, 20eqeltrrd 2845 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
22 mptfzshft.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
2322adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑀 ∈ ℤ)
24 mptfzshft.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2524adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑁 ∈ ℤ)
2611, 13zsubcld 11737 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑗𝐾) ∈ ℤ)
278, 26eqeltrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ ℤ)
28 fzaddel 12585 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
2923, 25, 27, 13, 28syl22anc 867 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3021, 29mpbird 248 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3130, 19jca 507 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))
32 simprr 789 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾))
33 simprl 787 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3422adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ)
3524adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ)
36 elfzelz 12552 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
3736ad2antrl 719 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ)
3812adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ)
3934, 35, 37, 38, 28syl22anc 867 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4033, 39mpbid 223 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4132, 40eqeltrd 2844 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4232oveq1d 6859 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗𝐾) = ((𝑘 + 𝐾) − 𝐾))
43 zcn 11631 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
44 pncan 10543 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4543, 15, 44syl2an 589 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4637, 38, 45syl2anc 579 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4742, 46eqtr2d 2800 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗𝐾))
4841, 47jca 507 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)))
4931, 48impbida 835 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))))
5049mptcnv 5719 . . . 4 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)))
5150fneq1d 6161 . . 3 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁) ↔ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)))
527, 51mpbiri 249 . 2 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁))
53 dff1o4 6330 . 2 ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁) ↔ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁)))
544, 52, 53sylanbrc 578 1 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cmpt 4890  ccnv 5278   Fn wfn 6065  1-1-ontowf1o 6069  (class class class)co 6844  cc 10189   + caddc 10194  cmin 10522  cz 11626  ...cfz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-fz 12537
This theorem is referenced by:  fsumshft  14799  fprodshft  14992  gsummptshft  18605
  Copyright terms: Public domain W3C validator