Step | Hyp | Ref
| Expression |
1 | | ovex 7288 |
. . . 4
⊢ (𝑗 − 𝐾) ∈ V |
2 | | eqid 2738 |
. . . 4
⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) |
3 | 1, 2 | fnmpti 6560 |
. . 3
⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
5 | | ovex 7288 |
. . . 4
⊢ (𝑘 + 𝐾) ∈ V |
6 | | eqid 2738 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) |
7 | 5, 6 | fnmpti 6560 |
. . 3
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁) |
8 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 = (𝑗 − 𝐾)) |
9 | 8 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 + 𝐾) = ((𝑗 − 𝐾) + 𝐾)) |
10 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ) |
11 | 10 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 ∈ ℤ) |
12 | | mptfzshft.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℤ) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝐾 ∈ ℤ) |
14 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
15 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
16 | | npcan 11160 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
17 | 14, 15, 16 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
18 | 11, 13, 17 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
19 | 9, 18 | eqtr2d 2779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 = (𝑘 + 𝐾)) |
20 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
21 | 19, 20 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
22 | | mptfzshft.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑀 ∈ ℤ) |
24 | | mptfzshft.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑁 ∈ ℤ) |
26 | 11, 13 | zsubcld 12360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑗 − 𝐾) ∈ ℤ) |
27 | 8, 26 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 ∈ ℤ) |
28 | | fzaddel 13219 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
29 | 23, 25, 27, 13, 28 | syl22anc 835 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
30 | 21, 29 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 ∈ (𝑀...𝑁)) |
31 | 30, 19 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) |
32 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾)) |
33 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁)) |
34 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ) |
35 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ) |
36 | | elfzelz 13185 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
37 | 36 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ) |
38 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ) |
39 | 34, 35, 37, 38, 28 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
40 | 33, 39 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
41 | 32, 40 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
42 | 32 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 − 𝐾) = ((𝑘 + 𝐾) − 𝐾)) |
43 | | zcn 12254 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
44 | | pncan 11157 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
45 | 43, 15, 44 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
46 | 37, 38, 45 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
47 | 42, 46 | eqtr2d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗 − 𝐾)) |
48 | 41, 47 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) |
49 | 31, 48 | impbida 797 |
. . . . 5
⊢ (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))) |
50 | 49 | mptcnv 6032 |
. . . 4
⊢ (𝜑 → ◡(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾))) |
51 | 50 | fneq1d 6510 |
. . 3
⊢ (𝜑 → (◡(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn (𝑀...𝑁) ↔ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁))) |
52 | 7, 51 | mpbiri 257 |
. 2
⊢ (𝜑 → ◡(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn (𝑀...𝑁)) |
53 | | dff1o4 6708 |
. 2
⊢ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁) ↔ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ ◡(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) Fn (𝑀...𝑁))) |
54 | 4, 52, 53 | sylanbrc 582 |
1
⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |