MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfzshft Structured version   Visualization version   GIF version

Theorem mptfzshft 15682
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft 15684. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1 (𝜑𝐾 ∈ ℤ)
mptfzshft.2 (𝜑𝑀 ∈ ℤ)
mptfzshft.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
mptfzshft (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁   𝜑,𝑗

Proof of Theorem mptfzshft
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . 4 (𝑗𝐾) ∈ V
2 eqid 2731 . . . 4 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾))
31, 2fnmpti 6624 . . 3 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾))
43a1i 11 . 2 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
5 ovex 7379 . . . 4 (𝑘 + 𝐾) ∈ V
6 eqid 2731 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾))
75, 6fnmpti 6624 . . 3 (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)
8 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 = (𝑗𝐾))
98oveq1d 7361 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) = ((𝑗𝐾) + 𝐾))
10 elfzelz 13421 . . . . . . . . . . . 12 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ)
1110ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ℤ)
12 mptfzshft.1 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝐾 ∈ ℤ)
14 zcn 12470 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
15 zcn 12470 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
16 npcan 11366 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1714, 15, 16syl2an 596 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1811, 13, 17syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → ((𝑗𝐾) + 𝐾) = 𝑗)
199, 18eqtr2d 2767 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 = (𝑘 + 𝐾))
20 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2119, 20eqeltrrd 2832 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
22 mptfzshft.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
2322adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑀 ∈ ℤ)
24 mptfzshft.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2524adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑁 ∈ ℤ)
2611, 13zsubcld 12579 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑗𝐾) ∈ ℤ)
278, 26eqeltrd 2831 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ ℤ)
28 fzaddel 13455 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
2923, 25, 27, 13, 28syl22anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3021, 29mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3130, 19jca 511 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))
32 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾))
33 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3422adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ)
3524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ)
36 elfzelz 13421 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
3736ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ)
3812adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ)
3934, 35, 37, 38, 28syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4033, 39mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4132, 40eqeltrd 2831 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4232oveq1d 7361 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗𝐾) = ((𝑘 + 𝐾) − 𝐾))
43 zcn 12470 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
44 pncan 11363 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4543, 15, 44syl2an 596 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4637, 38, 45syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4742, 46eqtr2d 2767 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗𝐾))
4841, 47jca 511 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)))
4931, 48impbida 800 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))))
5049mptcnv 6086 . . . 4 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)))
5150fneq1d 6574 . . 3 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁) ↔ (𝑘 ∈ (𝑀...𝑁) ↦ (𝑘 + 𝐾)) Fn (𝑀...𝑁)))
527, 51mpbiri 258 . 2 (𝜑(𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁))
53 dff1o4 6771 . 2 ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁) ↔ ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) Fn (𝑀...𝑁)))
544, 52, 53sylanbrc 583 1 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cmpt 5172  ccnv 5615   Fn wfn 6476  1-1-ontowf1o 6480  (class class class)co 7346  cc 11001   + caddc 11006  cmin 11341  cz 12465  ...cfz 13404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405
This theorem is referenced by:  fsumshft  15684  fprodshft  15880  gsummptshft  19846
  Copyright terms: Public domain W3C validator