Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv Structured version   Visualization version   GIF version

Theorem ballotlemrinv 34502
Description: 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv 𝑅 = 𝑅
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . 8 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . 8 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . 8 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . 8 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . 8 𝑁 < 𝑀
8 ballotth.i . . . . . . . 8 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . 8 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . . . 8 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrinv0 34501 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) → (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrinv0 34501 . . . . . . 7 ((𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)) → (𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)))
1311, 12impbii 209 . . . . . 6 ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)))
1413a1i 11 . . . . 5 (⊤ → ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑))))
1514mptcnv 6088 . . . 4 (⊤ → (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑)))
1615mptru 1547 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
17 fveq2 6822 . . . . 5 (𝑑 = 𝑐 → (𝑆𝑑) = (𝑆𝑐))
18 id 22 . . . . 5 (𝑑 = 𝑐𝑑 = 𝑐)
1917, 18imaeq12d 6012 . . . 4 (𝑑 = 𝑐 → ((𝑆𝑑) “ 𝑑) = ((𝑆𝑐) “ 𝑐))
2019cbvmptv 5196 . . 3 (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑)) = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2116, 20eqtri 2752 . 2 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2210cnveqi 5817 . 2 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2321, 22, 103eqtr4i 2762 1 𝑅 = 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  {crab 3394  cdif 3900  cin 3902  ifcif 4476  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  infcinf 9331  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-hash 14238
This theorem is referenced by:  ballotlem7  34504
  Copyright terms: Public domain W3C validator