Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv | Structured version Visualization version GIF version |
Description: 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrinv | ⊢ ◡𝑅 = 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . . . 8 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . . . 8 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . . . 8 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . . . 8 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . . . 8 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . . . . 8 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . . . . . 8 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 32799 | . . . . . . 7 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) → (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 32799 | . . . . . . 7 ⊢ ((𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)) → (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐))) |
13 | 11, 12 | impbii 208 | . . . . . 6 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)))) |
15 | 14 | mptcnv 6078 | . . . 4 ⊢ (⊤ → ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑))) |
16 | 15 | mptru 1547 | . . 3 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
17 | fveq2 6825 | . . . . 5 ⊢ (𝑑 = 𝑐 → (𝑆‘𝑑) = (𝑆‘𝑐)) | |
18 | id 22 | . . . . 5 ⊢ (𝑑 = 𝑐 → 𝑑 = 𝑐) | |
19 | 17, 18 | imaeq12d 6000 | . . . 4 ⊢ (𝑑 = 𝑐 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝑐) “ 𝑐)) |
20 | 19 | cbvmptv 5205 | . . 3 ⊢ (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
21 | 16, 20 | eqtri 2764 | . 2 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
22 | 10 | cnveqi 5816 | . 2 ⊢ ◡𝑅 = ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
23 | 21, 22, 10 | 3eqtr4i 2774 | 1 ⊢ ◡𝑅 = 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ∀wral 3061 {crab 3403 ∖ cdif 3895 ∩ cin 3897 ifcif 4473 𝒫 cpw 4547 class class class wbr 5092 ↦ cmpt 5175 ◡ccnv 5619 “ cima 5623 ‘cfv 6479 (class class class)co 7337 infcinf 9298 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 < clt 11110 ≤ cle 11111 − cmin 11306 / cdiv 11733 ℕcn 12074 ℤcz 12420 ...cfz 13340 ♯chash 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-hash 14146 |
This theorem is referenced by: ballotlem7 32802 |
Copyright terms: Public domain | W3C validator |