Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv Structured version   Visualization version   GIF version

Theorem ballotlemrinv 33532
Description: 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv 𝑅 = 𝑅
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . 8 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . 8 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . 8 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . 8 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . 8 𝑁 < 𝑀
8 ballotth.i . . . . . . . 8 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . 8 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . . . 8 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrinv0 33531 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) → (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrinv0 33531 . . . . . . 7 ((𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)) → (𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)))
1311, 12impbii 208 . . . . . 6 ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑)))
1413a1i 11 . . . . 5 (⊤ → ((𝑐 ∈ (𝑂𝐸) ∧ 𝑑 = ((𝑆𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂𝐸) ∧ 𝑐 = ((𝑆𝑑) “ 𝑑))))
1514mptcnv 6140 . . . 4 (⊤ → (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑)))
1615mptru 1549 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑))
17 fveq2 6892 . . . . 5 (𝑑 = 𝑐 → (𝑆𝑑) = (𝑆𝑐))
18 id 22 . . . . 5 (𝑑 = 𝑐𝑑 = 𝑐)
1917, 18imaeq12d 6061 . . . 4 (𝑑 = 𝑐 → ((𝑆𝑑) “ 𝑑) = ((𝑆𝑐) “ 𝑐))
2019cbvmptv 5262 . . 3 (𝑑 ∈ (𝑂𝐸) ↦ ((𝑆𝑑) “ 𝑑)) = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2116, 20eqtri 2761 . 2 (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐)) = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2210cnveqi 5875 . 2 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
2321, 22, 103eqtr4i 2771 1 𝑅 = 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wtru 1543  wcel 2107  wral 3062  {crab 3433  cdif 3946  cin 3948  ifcif 4529  𝒫 cpw 4603   class class class wbr 5149  cmpt 5232  ccnv 5676  cima 5680  cfv 6544  (class class class)co 7409  infcinf 9436  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444   / cdiv 11871  cn 12212  cz 12558  ...cfz 13484  chash 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-hash 14291
This theorem is referenced by:  ballotlem7  33534
  Copyright terms: Public domain W3C validator