![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv | Structured version Visualization version GIF version |
Description: 𝑅 is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrinv | ⊢ ◡𝑅 = 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . . . 8 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . . . 8 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . . . 8 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . . . 8 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . . . 8 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . . . 8 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . . . . 8 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . . . . . 8 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 34088 | . . . . . . 7 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) → (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrinv0 34088 | . . . . . . 7 ⊢ ((𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)) → (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐))) |
13 | 11, 12 | impbii 208 | . . . . . 6 ⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑))) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 𝑑 = ((𝑆‘𝑐) “ 𝑐)) ↔ (𝑑 ∈ (𝑂 ∖ 𝐸) ∧ 𝑐 = ((𝑆‘𝑑) “ 𝑑)))) |
15 | 14 | mptcnv 6138 | . . . 4 ⊢ (⊤ → ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑))) |
16 | 15 | mptru 1541 | . . 3 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) |
17 | fveq2 6891 | . . . . 5 ⊢ (𝑑 = 𝑐 → (𝑆‘𝑑) = (𝑆‘𝑐)) | |
18 | id 22 | . . . . 5 ⊢ (𝑑 = 𝑐 → 𝑑 = 𝑐) | |
19 | 17, 18 | imaeq12d 6058 | . . . 4 ⊢ (𝑑 = 𝑐 → ((𝑆‘𝑑) “ 𝑑) = ((𝑆‘𝑐) “ 𝑐)) |
20 | 19 | cbvmptv 5255 | . . 3 ⊢ (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑑) “ 𝑑)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
21 | 16, 20 | eqtri 2755 | . 2 ⊢ ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
22 | 10 | cnveqi 5871 | . 2 ⊢ ◡𝑅 = ◡(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
23 | 21, 22, 10 | 3eqtr4i 2765 | 1 ⊢ ◡𝑅 = 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ∀wral 3056 {crab 3427 ∖ cdif 3941 ∩ cin 3943 ifcif 4524 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ◡ccnv 5671 “ cima 5675 ‘cfv 6542 (class class class)co 7414 infcinf 9456 ℝcr 11129 0cc0 11130 1c1 11131 + caddc 11133 < clt 11270 ≤ cle 11271 − cmin 11466 / cdiv 11893 ℕcn 12234 ℤcz 12580 ...cfz 13508 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-hash 14314 |
This theorem is referenced by: ballotlem7 34091 |
Copyright terms: Public domain | W3C validator |