Step | Hyp | Ref
| Expression |
1 | | fconstmpt 5736 |
. . . . 5
β’ ({π΄} Γ {π₯}) = (π β {π΄} β¦ π₯) |
2 | | pt1hmeo.a |
. . . . . . 7
β’ (π β π΄ β π) |
3 | 2 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β π) β π΄ β π) |
4 | | sneq 4637 |
. . . . . . . . 9
β’ (π = π΄ β {π} = {π΄}) |
5 | 4 | xpeq1d 5704 |
. . . . . . . 8
β’ (π = π΄ β ({π} Γ {π₯}) = ({π΄} Γ {π₯})) |
6 | | opeq1 4872 |
. . . . . . . . 9
β’ (π = π΄ β β¨π, π₯β© = β¨π΄, π₯β©) |
7 | 6 | sneqd 4639 |
. . . . . . . 8
β’ (π = π΄ β {β¨π, π₯β©} = {β¨π΄, π₯β©}) |
8 | 5, 7 | eqeq12d 2748 |
. . . . . . 7
β’ (π = π΄ β (({π} Γ {π₯}) = {β¨π, π₯β©} β ({π΄} Γ {π₯}) = {β¨π΄, π₯β©})) |
9 | | vex 3478 |
. . . . . . . 8
β’ π β V |
10 | | vex 3478 |
. . . . . . . 8
β’ π₯ β V |
11 | 9, 10 | xpsn 7135 |
. . . . . . 7
β’ ({π} Γ {π₯}) = {β¨π, π₯β©} |
12 | 8, 11 | vtoclg 3556 |
. . . . . 6
β’ (π΄ β π β ({π΄} Γ {π₯}) = {β¨π΄, π₯β©}) |
13 | 3, 12 | syl 17 |
. . . . 5
β’ ((π β§ π₯ β π) β ({π΄} Γ {π₯}) = {β¨π΄, π₯β©}) |
14 | 1, 13 | eqtr3id 2786 |
. . . 4
β’ ((π β§ π₯ β π) β (π β {π΄} β¦ π₯) = {β¨π΄, π₯β©}) |
15 | 14 | mpteq2dva 5247 |
. . 3
β’ (π β (π₯ β π β¦ (π β {π΄} β¦ π₯)) = (π₯ β π β¦ {β¨π΄, π₯β©})) |
16 | | pt1hmeo.j |
. . . 4
β’ πΎ =
(βtβ{β¨π΄, π½β©}) |
17 | | pt1hmeo.r |
. . . 4
β’ (π β π½ β (TopOnβπ)) |
18 | | snex 5430 |
. . . . 5
β’ {π΄} β V |
19 | 18 | a1i 11 |
. . . 4
β’ (π β {π΄} β V) |
20 | | topontop 22406 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π½ β Top) |
21 | 17, 20 | syl 17 |
. . . . 5
β’ (π β π½ β Top) |
22 | 2, 21 | fsnd 6873 |
. . . 4
β’ (π β {β¨π΄, π½β©}:{π΄}βΆTop) |
23 | 17 | cnmptid 23156 |
. . . . . 6
β’ (π β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
24 | 23 | adantr 481 |
. . . . 5
β’ ((π β§ π β {π΄}) β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
25 | | elsni 4644 |
. . . . . . . 8
β’ (π β {π΄} β π = π΄) |
26 | 25 | fveq2d 6892 |
. . . . . . 7
β’ (π β {π΄} β ({β¨π΄, π½β©}βπ) = ({β¨π΄, π½β©}βπ΄)) |
27 | | fvsng 7174 |
. . . . . . . 8
β’ ((π΄ β π β§ π½ β (TopOnβπ)) β ({β¨π΄, π½β©}βπ΄) = π½) |
28 | 2, 17, 27 | syl2anc 584 |
. . . . . . 7
β’ (π β ({β¨π΄, π½β©}βπ΄) = π½) |
29 | 26, 28 | sylan9eqr 2794 |
. . . . . 6
β’ ((π β§ π β {π΄}) β ({β¨π΄, π½β©}βπ) = π½) |
30 | 29 | oveq2d 7421 |
. . . . 5
β’ ((π β§ π β {π΄}) β (π½ Cn ({β¨π΄, π½β©}βπ)) = (π½ Cn π½)) |
31 | 24, 30 | eleqtrrd 2836 |
. . . 4
β’ ((π β§ π β {π΄}) β (π₯ β π β¦ π₯) β (π½ Cn ({β¨π΄, π½β©}βπ))) |
32 | 16, 17, 19, 22, 31 | ptcn 23122 |
. . 3
β’ (π β (π₯ β π β¦ (π β {π΄} β¦ π₯)) β (π½ Cn πΎ)) |
33 | 15, 32 | eqeltrrd 2834 |
. 2
β’ (π β (π₯ β π β¦ {β¨π΄, π₯β©}) β (π½ Cn πΎ)) |
34 | | simprr 771 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π¦ = {β¨π΄, π₯β©}) |
35 | 14 | adantrr 715 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β (π β {π΄} β¦ π₯) = {β¨π΄, π₯β©}) |
36 | 34, 35 | eqtr4d 2775 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π¦ = (π β {π΄} β¦ π₯)) |
37 | | simprl 769 |
. . . . . . . . . . 11
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π₯ β π) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β§ π β {π΄}) β π₯ β π) |
39 | 38 | fmpttd 7111 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β (π β {π΄} β¦ π₯):{π΄}βΆπ) |
40 | | toponmax 22419 |
. . . . . . . . . . . 12
β’ (π½ β (TopOnβπ) β π β π½) |
41 | 17, 40 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β π½) |
42 | 41 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π β π½) |
43 | | elmapg 8829 |
. . . . . . . . . 10
β’ ((π β π½ β§ {π΄} β V) β ((π β {π΄} β¦ π₯) β (π βm {π΄}) β (π β {π΄} β¦ π₯):{π΄}βΆπ)) |
44 | 42, 18, 43 | sylancl 586 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β ((π β {π΄} β¦ π₯) β (π βm {π΄}) β (π β {π΄} β¦ π₯):{π΄}βΆπ)) |
45 | 39, 44 | mpbird 256 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β (π β {π΄} β¦ π₯) β (π βm {π΄})) |
46 | 36, 45 | eqeltrd 2833 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π¦ β (π βm {π΄})) |
47 | 34 | fveq1d 6890 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β (π¦βπ΄) = ({β¨π΄, π₯β©}βπ΄)) |
48 | 2 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π΄ β π) |
49 | | fvsng 7174 |
. . . . . . . . 9
β’ ((π΄ β π β§ π₯ β π) β ({β¨π΄, π₯β©}βπ΄) = π₯) |
50 | 48, 37, 49 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β ({β¨π΄, π₯β©}βπ΄) = π₯) |
51 | 47, 50 | eqtr2d 2773 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β π₯ = (π¦βπ΄)) |
52 | 46, 51 | jca 512 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) β (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) |
53 | | simprr 771 |
. . . . . . . 8
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π₯ = (π¦βπ΄)) |
54 | | simprl 769 |
. . . . . . . . . 10
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π¦ β (π βm {π΄})) |
55 | 41 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π β π½) |
56 | | elmapg 8829 |
. . . . . . . . . . 11
β’ ((π β π½ β§ {π΄} β V) β (π¦ β (π βm {π΄}) β π¦:{π΄}βΆπ)) |
57 | 55, 18, 56 | sylancl 586 |
. . . . . . . . . 10
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β (π¦ β (π βm {π΄}) β π¦:{π΄}βΆπ)) |
58 | 54, 57 | mpbid 231 |
. . . . . . . . 9
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π¦:{π΄}βΆπ) |
59 | | snidg 4661 |
. . . . . . . . . . 11
β’ (π΄ β π β π΄ β {π΄}) |
60 | 2, 59 | syl 17 |
. . . . . . . . . 10
β’ (π β π΄ β {π΄}) |
61 | 60 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π΄ β {π΄}) |
62 | 58, 61 | ffvelcdmd 7084 |
. . . . . . . 8
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β (π¦βπ΄) β π) |
63 | 53, 62 | eqeltrd 2833 |
. . . . . . 7
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π₯ β π) |
64 | 2 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π΄ β π) |
65 | | fsn2g 7132 |
. . . . . . . . . . 11
β’ (π΄ β π β (π¦:{π΄}βΆπ β ((π¦βπ΄) β π β§ π¦ = {β¨π΄, (π¦βπ΄)β©}))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β (π¦:{π΄}βΆπ β ((π¦βπ΄) β π β§ π¦ = {β¨π΄, (π¦βπ΄)β©}))) |
67 | 58, 66 | mpbid 231 |
. . . . . . . . 9
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β ((π¦βπ΄) β π β§ π¦ = {β¨π΄, (π¦βπ΄)β©})) |
68 | 67 | simprd 496 |
. . . . . . . 8
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π¦ = {β¨π΄, (π¦βπ΄)β©}) |
69 | 53 | opeq2d 4879 |
. . . . . . . . 9
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β β¨π΄, π₯β© = β¨π΄, (π¦βπ΄)β©) |
70 | 69 | sneqd 4639 |
. . . . . . . 8
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β {β¨π΄, π₯β©} = {β¨π΄, (π¦βπ΄)β©}) |
71 | 68, 70 | eqtr4d 2775 |
. . . . . . 7
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β π¦ = {β¨π΄, π₯β©}) |
72 | 63, 71 | jca 512 |
. . . . . 6
β’ ((π β§ (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄))) β (π₯ β π β§ π¦ = {β¨π΄, π₯β©})) |
73 | 52, 72 | impbida 799 |
. . . . 5
β’ (π β ((π₯ β π β§ π¦ = {β¨π΄, π₯β©}) β (π¦ β (π βm {π΄}) β§ π₯ = (π¦βπ΄)))) |
74 | 73 | mptcnv 6136 |
. . . 4
β’ (π β β‘(π₯ β π β¦ {β¨π΄, π₯β©}) = (π¦ β (π βm {π΄}) β¦ (π¦βπ΄))) |
75 | | xpsng 7133 |
. . . . . . . . . . 11
β’ ((π΄ β π β§ π½ β (TopOnβπ)) β ({π΄} Γ {π½}) = {β¨π΄, π½β©}) |
76 | 2, 17, 75 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β ({π΄} Γ {π½}) = {β¨π΄, π½β©}) |
77 | 76 | eqcomd 2738 |
. . . . . . . . 9
β’ (π β {β¨π΄, π½β©} = ({π΄} Γ {π½})) |
78 | 77 | fveq2d 6892 |
. . . . . . . 8
β’ (π β
(βtβ{β¨π΄, π½β©}) = (βtβ({π΄} Γ {π½}))) |
79 | 16, 78 | eqtrid 2784 |
. . . . . . 7
β’ (π β πΎ = (βtβ({π΄} Γ {π½}))) |
80 | | eqid 2732 |
. . . . . . . . 9
β’
(βtβ({π΄} Γ {π½})) = (βtβ({π΄} Γ {π½})) |
81 | 80 | pttoponconst 23092 |
. . . . . . . 8
β’ (({π΄} β V β§ π½ β (TopOnβπ)) β
(βtβ({π΄} Γ {π½})) β (TopOnβ(π βm {π΄}))) |
82 | 19, 17, 81 | syl2anc 584 |
. . . . . . 7
β’ (π β
(βtβ({π΄} Γ {π½})) β (TopOnβ(π βm {π΄}))) |
83 | 79, 82 | eqeltrd 2833 |
. . . . . 6
β’ (π β πΎ β (TopOnβ(π βm {π΄}))) |
84 | | toponuni 22407 |
. . . . . 6
β’ (πΎ β (TopOnβ(π βm {π΄})) β (π βm {π΄}) = βͺ πΎ) |
85 | 83, 84 | syl 17 |
. . . . 5
β’ (π β (π βm {π΄}) = βͺ πΎ) |
86 | 85 | mpteq1d 5242 |
. . . 4
β’ (π β (π¦ β (π βm {π΄}) β¦ (π¦βπ΄)) = (π¦ β βͺ πΎ β¦ (π¦βπ΄))) |
87 | 74, 86 | eqtrd 2772 |
. . 3
β’ (π β β‘(π₯ β π β¦ {β¨π΄, π₯β©}) = (π¦ β βͺ πΎ β¦ (π¦βπ΄))) |
88 | | eqid 2732 |
. . . . . 6
β’ βͺ πΎ =
βͺ πΎ |
89 | 88, 16 | ptpjcn 23106 |
. . . . 5
β’ (({π΄} β V β§ {β¨π΄, π½β©}:{π΄}βΆTop β§ π΄ β {π΄}) β (π¦ β βͺ πΎ β¦ (π¦βπ΄)) β (πΎ Cn ({β¨π΄, π½β©}βπ΄))) |
90 | 18, 22, 60, 89 | mp3an2i 1466 |
. . . 4
β’ (π β (π¦ β βͺ πΎ β¦ (π¦βπ΄)) β (πΎ Cn ({β¨π΄, π½β©}βπ΄))) |
91 | 28 | oveq2d 7421 |
. . . 4
β’ (π β (πΎ Cn ({β¨π΄, π½β©}βπ΄)) = (πΎ Cn π½)) |
92 | 90, 91 | eleqtrd 2835 |
. . 3
β’ (π β (π¦ β βͺ πΎ β¦ (π¦βπ΄)) β (πΎ Cn π½)) |
93 | 87, 92 | eqeltrd 2833 |
. 2
β’ (π β β‘(π₯ β π β¦ {β¨π΄, π₯β©}) β (πΎ Cn π½)) |
94 | | ishmeo 23254 |
. 2
β’ ((π₯ β π β¦ {β¨π΄, π₯β©}) β (π½HomeoπΎ) β ((π₯ β π β¦ {β¨π΄, π₯β©}) β (π½ Cn πΎ) β§ β‘(π₯ β π β¦ {β¨π΄, π₯β©}) β (πΎ Cn π½))) |
95 | 33, 93, 94 | sylanbrc 583 |
1
β’ (π β (π₯ β π β¦ {β¨π΄, π₯β©}) β (π½HomeoπΎ)) |