MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pt1hmeo Structured version   Visualization version   GIF version

Theorem pt1hmeo 23700
Description: The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015.) (Proof shortened by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
pt1hmeo.j 𝐾 = (∏t‘{⟨𝐴, 𝐽⟩})
pt1hmeo.a (𝜑𝐴𝑉)
pt1hmeo.r (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
pt1hmeo (𝜑 → (𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐽Homeo𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem pt1hmeo
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5703 . . . . 5 ({𝐴} × {𝑥}) = (𝑘 ∈ {𝐴} ↦ 𝑥)
2 pt1hmeo.a . . . . . . 7 (𝜑𝐴𝑉)
32adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴𝑉)
4 sneq 4602 . . . . . . . . 9 (𝑘 = 𝐴 → {𝑘} = {𝐴})
54xpeq1d 5670 . . . . . . . 8 (𝑘 = 𝐴 → ({𝑘} × {𝑥}) = ({𝐴} × {𝑥}))
6 opeq1 4840 . . . . . . . . 9 (𝑘 = 𝐴 → ⟨𝑘, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
76sneqd 4604 . . . . . . . 8 (𝑘 = 𝐴 → {⟨𝑘, 𝑥⟩} = {⟨𝐴, 𝑥⟩})
85, 7eqeq12d 2746 . . . . . . 7 (𝑘 = 𝐴 → (({𝑘} × {𝑥}) = {⟨𝑘, 𝑥⟩} ↔ ({𝐴} × {𝑥}) = {⟨𝐴, 𝑥⟩}))
9 vex 3454 . . . . . . . 8 𝑘 ∈ V
10 vex 3454 . . . . . . . 8 𝑥 ∈ V
119, 10xpsn 7116 . . . . . . 7 ({𝑘} × {𝑥}) = {⟨𝑘, 𝑥⟩}
128, 11vtoclg 3523 . . . . . 6 (𝐴𝑉 → ({𝐴} × {𝑥}) = {⟨𝐴, 𝑥⟩})
133, 12syl 17 . . . . 5 ((𝜑𝑥𝑋) → ({𝐴} × {𝑥}) = {⟨𝐴, 𝑥⟩})
141, 13eqtr3id 2779 . . . 4 ((𝜑𝑥𝑋) → (𝑘 ∈ {𝐴} ↦ 𝑥) = {⟨𝐴, 𝑥⟩})
1514mpteq2dva 5203 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑘 ∈ {𝐴} ↦ 𝑥)) = (𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}))
16 pt1hmeo.j . . . 4 𝐾 = (∏t‘{⟨𝐴, 𝐽⟩})
17 pt1hmeo.r . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
18 snex 5394 . . . . 5 {𝐴} ∈ V
1918a1i 11 . . . 4 (𝜑 → {𝐴} ∈ V)
20 topontop 22807 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2117, 20syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
222, 21fsnd 6846 . . . 4 (𝜑 → {⟨𝐴, 𝐽⟩}:{𝐴}⟶Top)
2317cnmptid 23555 . . . . . 6 (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
2423adantr 480 . . . . 5 ((𝜑𝑘 ∈ {𝐴}) → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
25 elsni 4609 . . . . . . . 8 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
2625fveq2d 6865 . . . . . . 7 (𝑘 ∈ {𝐴} → ({⟨𝐴, 𝐽⟩}‘𝑘) = ({⟨𝐴, 𝐽⟩}‘𝐴))
27 fvsng 7157 . . . . . . . 8 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → ({⟨𝐴, 𝐽⟩}‘𝐴) = 𝐽)
282, 17, 27syl2anc 584 . . . . . . 7 (𝜑 → ({⟨𝐴, 𝐽⟩}‘𝐴) = 𝐽)
2926, 28sylan9eqr 2787 . . . . . 6 ((𝜑𝑘 ∈ {𝐴}) → ({⟨𝐴, 𝐽⟩}‘𝑘) = 𝐽)
3029oveq2d 7406 . . . . 5 ((𝜑𝑘 ∈ {𝐴}) → (𝐽 Cn ({⟨𝐴, 𝐽⟩}‘𝑘)) = (𝐽 Cn 𝐽))
3124, 30eleqtrrd 2832 . . . 4 ((𝜑𝑘 ∈ {𝐴}) → (𝑥𝑋𝑥) ∈ (𝐽 Cn ({⟨𝐴, 𝐽⟩}‘𝑘)))
3216, 17, 19, 22, 31ptcn 23521 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑘 ∈ {𝐴} ↦ 𝑥)) ∈ (𝐽 Cn 𝐾))
3315, 32eqeltrrd 2830 . 2 (𝜑 → (𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐽 Cn 𝐾))
34 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑦 = {⟨𝐴, 𝑥⟩})
3514adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → (𝑘 ∈ {𝐴} ↦ 𝑥) = {⟨𝐴, 𝑥⟩})
3634, 35eqtr4d 2768 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑦 = (𝑘 ∈ {𝐴} ↦ 𝑥))
37 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑥𝑋)
3837adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) ∧ 𝑘 ∈ {𝐴}) → 𝑥𝑋)
3938fmpttd 7090 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋)
40 toponmax 22820 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
4117, 40syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐽)
4241adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑋𝐽)
43 elmapg 8815 . . . . . . . . . 10 ((𝑋𝐽 ∧ {𝐴} ∈ V) → ((𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋m {𝐴}) ↔ (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋))
4442, 18, 43sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → ((𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋m {𝐴}) ↔ (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋))
4539, 44mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → (𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋m {𝐴}))
4636, 45eqeltrd 2829 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑦 ∈ (𝑋m {𝐴}))
4734fveq1d 6863 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → (𝑦𝐴) = ({⟨𝐴, 𝑥⟩}‘𝐴))
482adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝐴𝑉)
49 fvsng 7157 . . . . . . . . 9 ((𝐴𝑉𝑥𝑋) → ({⟨𝐴, 𝑥⟩}‘𝐴) = 𝑥)
5048, 37, 49syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → ({⟨𝐴, 𝑥⟩}‘𝐴) = 𝑥)
5147, 50eqtr2d 2766 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → 𝑥 = (𝑦𝐴))
5246, 51jca 511 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩})) → (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴)))
53 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑥 = (𝑦𝐴))
54 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑦 ∈ (𝑋m {𝐴}))
5541adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑋𝐽)
56 elmapg 8815 . . . . . . . . . . 11 ((𝑋𝐽 ∧ {𝐴} ∈ V) → (𝑦 ∈ (𝑋m {𝐴}) ↔ 𝑦:{𝐴}⟶𝑋))
5755, 18, 56sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → (𝑦 ∈ (𝑋m {𝐴}) ↔ 𝑦:{𝐴}⟶𝑋))
5854, 57mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑦:{𝐴}⟶𝑋)
59 snidg 4627 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
602, 59syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
6160adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝐴 ∈ {𝐴})
6258, 61ffvelcdmd 7060 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → (𝑦𝐴) ∈ 𝑋)
6353, 62eqeltrd 2829 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑥𝑋)
642adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝐴𝑉)
65 fsn2g 7113 . . . . . . . . . . 11 (𝐴𝑉 → (𝑦:{𝐴}⟶𝑋 ↔ ((𝑦𝐴) ∈ 𝑋𝑦 = {⟨𝐴, (𝑦𝐴)⟩})))
6664, 65syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → (𝑦:{𝐴}⟶𝑋 ↔ ((𝑦𝐴) ∈ 𝑋𝑦 = {⟨𝐴, (𝑦𝐴)⟩})))
6758, 66mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → ((𝑦𝐴) ∈ 𝑋𝑦 = {⟨𝐴, (𝑦𝐴)⟩}))
6867simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑦 = {⟨𝐴, (𝑦𝐴)⟩})
6953opeq2d 4847 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, (𝑦𝐴)⟩)
7069sneqd 4604 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → {⟨𝐴, 𝑥⟩} = {⟨𝐴, (𝑦𝐴)⟩})
7168, 70eqtr4d 2768 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → 𝑦 = {⟨𝐴, 𝑥⟩})
7263, 71jca 511 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))) → (𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩}))
7352, 72impbida 800 . . . . 5 (𝜑 → ((𝑥𝑋𝑦 = {⟨𝐴, 𝑥⟩}) ↔ (𝑦 ∈ (𝑋m {𝐴}) ∧ 𝑥 = (𝑦𝐴))))
7473mptcnv 6115 . . . 4 (𝜑(𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) = (𝑦 ∈ (𝑋m {𝐴}) ↦ (𝑦𝐴)))
75 xpsng 7114 . . . . . . . . . . 11 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → ({𝐴} × {𝐽}) = {⟨𝐴, 𝐽⟩})
762, 17, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → ({𝐴} × {𝐽}) = {⟨𝐴, 𝐽⟩})
7776eqcomd 2736 . . . . . . . . 9 (𝜑 → {⟨𝐴, 𝐽⟩} = ({𝐴} × {𝐽}))
7877fveq2d 6865 . . . . . . . 8 (𝜑 → (∏t‘{⟨𝐴, 𝐽⟩}) = (∏t‘({𝐴} × {𝐽})))
7916, 78eqtrid 2777 . . . . . . 7 (𝜑𝐾 = (∏t‘({𝐴} × {𝐽})))
80 eqid 2730 . . . . . . . . 9 (∏t‘({𝐴} × {𝐽})) = (∏t‘({𝐴} × {𝐽}))
8180pttoponconst 23491 . . . . . . . 8 (({𝐴} ∈ V ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∏t‘({𝐴} × {𝐽})) ∈ (TopOn‘(𝑋m {𝐴})))
8219, 17, 81syl2anc 584 . . . . . . 7 (𝜑 → (∏t‘({𝐴} × {𝐽})) ∈ (TopOn‘(𝑋m {𝐴})))
8379, 82eqeltrd 2829 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(𝑋m {𝐴})))
84 toponuni 22808 . . . . . 6 (𝐾 ∈ (TopOn‘(𝑋m {𝐴})) → (𝑋m {𝐴}) = 𝐾)
8583, 84syl 17 . . . . 5 (𝜑 → (𝑋m {𝐴}) = 𝐾)
8685mpteq1d 5200 . . . 4 (𝜑 → (𝑦 ∈ (𝑋m {𝐴}) ↦ (𝑦𝐴)) = (𝑦 𝐾 ↦ (𝑦𝐴)))
8774, 86eqtrd 2765 . . 3 (𝜑(𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) = (𝑦 𝐾 ↦ (𝑦𝐴)))
88 eqid 2730 . . . . . 6 𝐾 = 𝐾
8988, 16ptpjcn 23505 . . . . 5 (({𝐴} ∈ V ∧ {⟨𝐴, 𝐽⟩}:{𝐴}⟶Top ∧ 𝐴 ∈ {𝐴}) → (𝑦 𝐾 ↦ (𝑦𝐴)) ∈ (𝐾 Cn ({⟨𝐴, 𝐽⟩}‘𝐴)))
9018, 22, 60, 89mp3an2i 1468 . . . 4 (𝜑 → (𝑦 𝐾 ↦ (𝑦𝐴)) ∈ (𝐾 Cn ({⟨𝐴, 𝐽⟩}‘𝐴)))
9128oveq2d 7406 . . . 4 (𝜑 → (𝐾 Cn ({⟨𝐴, 𝐽⟩}‘𝐴)) = (𝐾 Cn 𝐽))
9290, 91eleqtrd 2831 . . 3 (𝜑 → (𝑦 𝐾 ↦ (𝑦𝐴)) ∈ (𝐾 Cn 𝐽))
9387, 92eqeltrd 2829 . 2 (𝜑(𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐾 Cn 𝐽))
94 ishmeo 23653 . 2 ((𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐽Homeo𝐾) ↔ ((𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐾 Cn 𝐽)))
9533, 93, 94sylanbrc 583 1 (𝜑 → (𝑥𝑋 ↦ {⟨𝐴, 𝑥⟩}) ∈ (𝐽Homeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598   cuni 4874  cmpt 5191   × cxp 5639  ccnv 5640  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  tcpt 17408  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  Homeochmeo 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-cnp 23122  df-hmeo 23649
This theorem is referenced by:  xpstopnlem1  23703  ptcmpfi  23707
  Copyright terms: Public domain W3C validator