MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvocnv Structured version   Visualization version   GIF version

Theorem nvocnv 7256
Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.)
Assertion
Ref Expression
nvocnv ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem nvocnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑦 = (𝐹𝑧))
2 simpll 766 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝐹:𝐴𝐴)
3 simprl 770 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑧𝐴)
42, 3ffvelcdmd 7057 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹𝑧) ∈ 𝐴)
51, 4eqeltrd 2828 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑦𝐴)
61fveq2d 6862 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
7 2fveq3 6863 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑧)))
8 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
97, 8eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑧)) = 𝑧))
10 simplr 768 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
119, 10, 3rspcdva 3589 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
126, 11eqtr2d 2765 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑧 = (𝐹𝑦))
135, 12jca 511 . . . 4 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝑦𝐴𝑧 = (𝐹𝑦)))
14 simprr 772 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑧 = (𝐹𝑦))
15 simpll 766 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝐹:𝐴𝐴)
16 simprl 770 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑦𝐴)
1715, 16ffvelcdmd 7057 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹𝑦) ∈ 𝐴)
1814, 17eqeltrd 2828 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑧𝐴)
1914fveq2d 6862 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹𝑧) = (𝐹‘(𝐹𝑦)))
20 2fveq3 6863 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑦)))
21 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
2220, 21eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑦)) = 𝑦))
23 simplr 768 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
2422, 23, 16rspcdva 3589 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹‘(𝐹𝑦)) = 𝑦)
2519, 24eqtr2d 2765 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑦 = (𝐹𝑧))
2618, 25jca 511 . . . 4 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝑧𝐴𝑦 = (𝐹𝑧)))
2713, 26impbida 800 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → ((𝑧𝐴𝑦 = (𝐹𝑧)) ↔ (𝑦𝐴𝑧 = (𝐹𝑦))))
2827mptcnv 6112 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑦𝐴 ↦ (𝐹𝑦)))
29 ffn 6688 . . . 4 (𝐹:𝐴𝐴𝐹 Fn 𝐴)
30 dffn5 6919 . . . . . 6 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3130biimpi 216 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3231adantr 480 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3329, 32sylan 580 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3433cnveqd 5839 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
35 dffn5 6919 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3635biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3736adantr 480 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3829, 37sylan 580 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3928, 34, 383eqtr4d 2774 1 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5188  ccnv 5637   Fn wfn 6506  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  mirf1o  28596  lmif1o  28722  nvocnvb  43411
  Copyright terms: Public domain W3C validator