Step | Hyp | Ref
| Expression |
1 | | simprr 773 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → 𝑦 = (𝐹‘𝑧)) |
2 | | simpll 767 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → 𝐹:𝐴⟶𝐴) |
3 | | simprl 771 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → 𝑧 ∈ 𝐴) |
4 | 2, 3 | ffvelrnd 6905 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → (𝐹‘𝑧) ∈ 𝐴) |
5 | 1, 4 | eqeltrd 2838 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → 𝑦 ∈ 𝐴) |
6 | 1 | fveq2d 6721 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → (𝐹‘𝑦) = (𝐹‘(𝐹‘𝑧))) |
7 | | 2fveq3 6722 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑧))) |
8 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
9 | 7, 8 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝐹‘𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘𝑧)) = 𝑧)) |
10 | | simplr 769 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) |
11 | 9, 10, 3 | rspcdva 3539 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → (𝐹‘(𝐹‘𝑧)) = 𝑧) |
12 | 6, 11 | eqtr2d 2778 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → 𝑧 = (𝐹‘𝑦)) |
13 | 5, 12 | jca 515 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) → (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) |
14 | | simprr 773 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → 𝑧 = (𝐹‘𝑦)) |
15 | | simpll 767 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → 𝐹:𝐴⟶𝐴) |
16 | | simprl 771 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) |
17 | 15, 16 | ffvelrnd 6905 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → (𝐹‘𝑦) ∈ 𝐴) |
18 | 14, 17 | eqeltrd 2838 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → 𝑧 ∈ 𝐴) |
19 | 14 | fveq2d 6721 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → (𝐹‘𝑧) = (𝐹‘(𝐹‘𝑦))) |
20 | | 2fveq3 6722 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑦))) |
21 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
22 | 20, 21 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝐹‘𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘𝑦)) = 𝑦)) |
23 | | simplr 769 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) |
24 | 22, 23, 16 | rspcdva 3539 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → (𝐹‘(𝐹‘𝑦)) = 𝑦) |
25 | 19, 24 | eqtr2d 2778 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → 𝑦 = (𝐹‘𝑧)) |
26 | 18, 25 | jca 515 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦))) → (𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧))) |
27 | 13, 26 | impbida 801 |
. . 3
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑧)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = (𝐹‘𝑦)))) |
28 | 27 | mptcnv 6003 |
. 2
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡(𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
29 | | ffn 6545 |
. . . 4
⊢ (𝐹:𝐴⟶𝐴 → 𝐹 Fn 𝐴) |
30 | | dffn5 6771 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
31 | 30 | biimpi 219 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
32 | 31 | adantr 484 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
33 | 29, 32 | sylan 583 |
. . 3
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
34 | 33 | cnveqd 5744 |
. 2
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡𝐹 = ◡(𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
35 | | dffn5 6771 |
. . . . 5
⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
36 | 35 | biimpi 219 |
. . . 4
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
37 | 36 | adantr 484 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
38 | 29, 37 | sylan 583 |
. 2
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
39 | 28, 34, 38 | 3eqtr4d 2787 |
1
⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡𝐹 = 𝐹) |