MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvocnv Structured version   Visualization version   GIF version

Theorem nvocnv 7227
Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.)
Assertion
Ref Expression
nvocnv ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem nvocnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 771 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑦 = (𝐹𝑧))
2 simpll 765 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝐹:𝐴𝐴)
3 simprl 769 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑧𝐴)
42, 3ffvelcdmd 7036 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹𝑧) ∈ 𝐴)
51, 4eqeltrd 2838 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑦𝐴)
61fveq2d 6846 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
7 2fveq3 6847 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑧)))
8 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
97, 8eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑧)) = 𝑧))
10 simplr 767 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
119, 10, 3rspcdva 3582 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝐹‘(𝐹𝑧)) = 𝑧)
126, 11eqtr2d 2777 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → 𝑧 = (𝐹𝑦))
135, 12jca 512 . . . 4 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑧𝐴𝑦 = (𝐹𝑧))) → (𝑦𝐴𝑧 = (𝐹𝑦)))
14 simprr 771 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑧 = (𝐹𝑦))
15 simpll 765 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝐹:𝐴𝐴)
16 simprl 769 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑦𝐴)
1715, 16ffvelcdmd 7036 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹𝑦) ∈ 𝐴)
1814, 17eqeltrd 2838 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑧𝐴)
1914fveq2d 6846 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹𝑧) = (𝐹‘(𝐹𝑦)))
20 2fveq3 6847 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑦)))
21 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
2220, 21eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑦)) = 𝑦))
23 simplr 767 . . . . . . 7 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
2422, 23, 16rspcdva 3582 . . . . . 6 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝐹‘(𝐹𝑦)) = 𝑦)
2519, 24eqtr2d 2777 . . . . 5 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → 𝑦 = (𝐹𝑧))
2618, 25jca 512 . . . 4 (((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) ∧ (𝑦𝐴𝑧 = (𝐹𝑦))) → (𝑧𝐴𝑦 = (𝐹𝑧)))
2713, 26impbida 799 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → ((𝑧𝐴𝑦 = (𝐹𝑧)) ↔ (𝑦𝐴𝑧 = (𝐹𝑦))))
2827mptcnv 6092 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝑧𝐴 ↦ (𝐹𝑧)) = (𝑦𝐴 ↦ (𝐹𝑦)))
29 ffn 6668 . . . 4 (𝐹:𝐴𝐴𝐹 Fn 𝐴)
30 dffn5 6901 . . . . . 6 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3130biimpi 215 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3231adantr 481 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3329, 32sylan 580 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
3433cnveqd 5831 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
35 dffn5 6901 . . . . 5 (𝐹 Fn 𝐴𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3635biimpi 215 . . . 4 (𝐹 Fn 𝐴𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3736adantr 481 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3829, 37sylan 580 . 2 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
3928, 34, 383eqtr4d 2786 1 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  cmpt 5188  ccnv 5632   Fn wfn 6491  wf 6492  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504
This theorem is referenced by:  mirf1o  27611  lmif1o  27737  nvocnvb  41684
  Copyright terms: Public domain W3C validator