Proof of Theorem mreexd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mreexd.2 | . 2
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | 
| 2 |  | mreexd.1 | . . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 3 |  | mreexd.3 | . . . 4
⊢ (𝜑 → 𝑆 ⊆ 𝑋) | 
| 4 | 2, 3 | sselpwd 5328 | . . 3
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝑋) | 
| 5 |  | mreexd.4 | . . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → 𝑌 ∈ 𝑋) | 
| 7 |  | mreexd.5 | . . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) | 
| 8 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) | 
| 9 |  | simplr 769 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑠 = 𝑆) | 
| 10 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | 
| 11 | 10 | sneqd 4638 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) | 
| 12 | 9, 11 | uneq12d 4169 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑠 ∪ {𝑦}) = (𝑆 ∪ {𝑌})) | 
| 13 | 12 | fveq2d 6910 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑆 ∪ {𝑌}))) | 
| 14 | 8, 13 | eleqtrrd 2844 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑠 ∪ {𝑦}))) | 
| 15 |  | mreexd.6 | . . . . . . . 8
⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘𝑆)) | 
| 16 | 15 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑆)) | 
| 17 | 9 | fveq2d 6910 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘𝑠) = (𝑁‘𝑆)) | 
| 18 | 16, 17 | neleqtrrd 2864 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑠)) | 
| 19 | 14, 18 | eldifd 3962 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) | 
| 20 |  | simplr 769 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌) | 
| 21 |  | simpllr 776 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑠 = 𝑆) | 
| 22 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | 
| 23 | 22 | sneqd 4638 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) | 
| 24 | 21, 23 | uneq12d 4169 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑠 ∪ {𝑧}) = (𝑆 ∪ {𝑍})) | 
| 25 | 24 | fveq2d 6910 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑁‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑆 ∪ {𝑍}))) | 
| 26 | 20, 25 | eleq12d 2835 | . . . . 5
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) | 
| 27 | 19, 26 | rspcdv 3614 | . . . 4
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) | 
| 28 | 6, 27 | rspcimdv 3612 | . . 3
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) | 
| 29 | 4, 28 | rspcimdv 3612 | . 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) | 
| 30 | 1, 29 | mpd 15 | 1
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))) |