Proof of Theorem mreexd
| Step | Hyp | Ref
| Expression |
| 1 | | mreexd.2 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 2 | | mreexd.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 3 | | mreexd.3 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 4 | 2, 3 | sselpwd 5298 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝑋) |
| 5 | | mreexd.4 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → 𝑌 ∈ 𝑋) |
| 7 | | mreexd.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) |
| 8 | 7 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) |
| 9 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑠 = 𝑆) |
| 10 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) |
| 11 | 10 | sneqd 4613 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) |
| 12 | 9, 11 | uneq12d 4144 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑠 ∪ {𝑦}) = (𝑆 ∪ {𝑌})) |
| 13 | 12 | fveq2d 6880 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑆 ∪ {𝑌}))) |
| 14 | 8, 13 | eleqtrrd 2837 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑠 ∪ {𝑦}))) |
| 15 | | mreexd.6 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘𝑆)) |
| 16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑆)) |
| 17 | 9 | fveq2d 6880 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘𝑠) = (𝑁‘𝑆)) |
| 18 | 16, 17 | neleqtrrd 2857 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑠)) |
| 19 | 14, 18 | eldifd 3937 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) |
| 20 | | simplr 768 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌) |
| 21 | | simpllr 775 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑠 = 𝑆) |
| 22 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) |
| 23 | 22 | sneqd 4613 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
| 24 | 21, 23 | uneq12d 4144 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑠 ∪ {𝑧}) = (𝑆 ∪ {𝑍})) |
| 25 | 24 | fveq2d 6880 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑁‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑆 ∪ {𝑍}))) |
| 26 | 20, 25 | eleq12d 2828 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
| 27 | 19, 26 | rspcdv 3593 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
| 28 | 6, 27 | rspcimdv 3591 |
. . 3
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
| 29 | 4, 28 | rspcimdv 3591 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
| 30 | 1, 29 | mpd 15 |
1
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))) |