MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexd Structured version   Visualization version   GIF version

Theorem mreexd 16916
Description: In a Moore system, the closure operator is said to have the exchange property if, for all elements 𝑦 and 𝑧 of the base set and subsets 𝑆 of the base set such that 𝑧 is in the closure of (𝑆 ∪ {𝑦}) but not in the closure of 𝑆, 𝑦 is in the closure of (𝑆 ∪ {𝑧}) (Definition 3.1.9 in [FaureFrolicher] p. 57 to 58.) This theorem allows us to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexd.1 (𝜑𝑋𝑉)
mreexd.2 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexd.3 (𝜑𝑆𝑋)
mreexd.4 (𝜑𝑌𝑋)
mreexd.5 (𝜑𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌})))
mreexd.6 (𝜑 → ¬ 𝑍 ∈ (𝑁𝑆))
Assertion
Ref Expression
mreexd (𝜑𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))
Distinct variable groups:   𝑋,𝑠,𝑦   𝑆,𝑠,𝑧,𝑦   𝜑,𝑠,𝑦,𝑧   𝑌,𝑠,𝑦,𝑧   𝑍,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧,𝑠)   𝑋(𝑧)

Proof of Theorem mreexd
StepHypRef Expression
1 mreexd.2 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
2 mreexd.1 . . . 4 (𝜑𝑋𝑉)
3 mreexd.3 . . . 4 (𝜑𝑆𝑋)
42, 3sselpwd 5233 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
5 mreexd.4 . . . . 5 (𝜑𝑌𝑋)
65adantr 483 . . . 4 ((𝜑𝑠 = 𝑆) → 𝑌𝑋)
7 mreexd.5 . . . . . . . 8 (𝜑𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌})))
87ad2antrr 724 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌})))
9 simplr 767 . . . . . . . . 9 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑠 = 𝑆)
10 simpr 487 . . . . . . . . . 10 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
1110sneqd 4582 . . . . . . . . 9 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌})
129, 11uneq12d 4143 . . . . . . . 8 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑠 ∪ {𝑦}) = (𝑆 ∪ {𝑌}))
1312fveq2d 6677 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑆 ∪ {𝑌})))
148, 13eleqtrrd 2919 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑠 ∪ {𝑦})))
15 mreexd.6 . . . . . . . 8 (𝜑 → ¬ 𝑍 ∈ (𝑁𝑆))
1615ad2antrr 724 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁𝑆))
179fveq2d 6677 . . . . . . 7 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁𝑠) = (𝑁𝑆))
1816, 17neleqtrrd 2938 . . . . . 6 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁𝑠))
1914, 18eldifd 3950 . . . . 5 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠)))
20 simplr 767 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
21 simpllr 774 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑠 = 𝑆)
22 simpr 487 . . . . . . . . 9 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍)
2322sneqd 4582 . . . . . . . 8 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍})
2421, 23uneq12d 4143 . . . . . . 7 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑠 ∪ {𝑧}) = (𝑆 ∪ {𝑍}))
2524fveq2d 6677 . . . . . 6 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑁‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑆 ∪ {𝑍})))
2620, 25eleq12d 2910 . . . . 5 ((((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))))
2719, 26rspcdv 3618 . . . 4 (((𝜑𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))))
286, 27rspcimdv 3616 . . 3 ((𝜑𝑠 = 𝑆) → (∀𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))))
294, 28rspcimdv 3616 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))))
301, 29mpd 15 1 (𝜑𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  cdif 3936  cun 3937  wss 3939  𝒫 cpw 4542  {csn 4570  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366
This theorem is referenced by:  mreexmrid  16917
  Copyright terms: Public domain W3C validator