MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem1 Structured version   Visualization version   GIF version

Theorem mulsproplem1 27826
Description: Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem1.1 (𝜑𝑋 No )
mulsproplem1.2 (𝜑𝑌 No )
mulsproplem1.3 (𝜑𝑍 No )
mulsproplem1.4 (𝜑𝑊 No )
mulsproplem1.5 (𝜑𝑇 No )
mulsproplem1.6 (𝜑𝑈 No )
mulsproplem1.7 (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
Assertion
Ref Expression
mulsproplem1 (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑇,𝑒,𝑓   𝑈,𝑓   𝑊,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓   𝑍,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑇(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑊(𝑎,𝑏,𝑐)   𝑌(𝑎)   𝑍(𝑎,𝑏)

Proof of Theorem mulsproplem1
StepHypRef Expression
1 mulsproplem.1 . 2 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 mulsproplem1.7 . 2 (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3 mulsproplem1.1 . . 3 (𝜑𝑋 No )
4 mulsproplem1.2 . . 3 (𝜑𝑌 No )
5 mulsproplem1.3 . . 3 (𝜑𝑍 No )
6 mulsproplem1.4 . . 3 (𝜑𝑊 No )
7 mulsproplem1.5 . . 3 (𝜑𝑇 No )
8 mulsproplem1.6 . . 3 (𝜑𝑈 No )
9 fveq2 6891 . . . . . . . 8 (𝑎 = 𝑋 → ( bday 𝑎) = ( bday 𝑋))
109oveq1d 7427 . . . . . . 7 (𝑎 = 𝑋 → (( bday 𝑎) +no ( bday 𝑏)) = (( bday 𝑋) +no ( bday 𝑏)))
1110uneq1d 4162 . . . . . 6 (𝑎 = 𝑋 → ((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) = ((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))))
1211eleq1d 2817 . . . . 5 (𝑎 = 𝑋 → (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
13 oveq1 7419 . . . . . . 7 (𝑎 = 𝑋 → (𝑎 ·s 𝑏) = (𝑋 ·s 𝑏))
1413eleq1d 2817 . . . . . 6 (𝑎 = 𝑋 → ((𝑎 ·s 𝑏) ∈ No ↔ (𝑋 ·s 𝑏) ∈ No ))
1514anbi1d 629 . . . . 5 (𝑎 = 𝑋 → (((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
1612, 15imbi12d 344 . . . 4 (𝑎 = 𝑋 → ((((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))))
17 fveq2 6891 . . . . . . . 8 (𝑏 = 𝑌 → ( bday 𝑏) = ( bday 𝑌))
1817oveq2d 7428 . . . . . . 7 (𝑏 = 𝑌 → (( bday 𝑋) +no ( bday 𝑏)) = (( bday 𝑋) +no ( bday 𝑌)))
1918uneq1d 4162 . . . . . 6 (𝑏 = 𝑌 → ((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))))
2019eleq1d 2817 . . . . 5 (𝑏 = 𝑌 → (((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
21 oveq2 7420 . . . . . . 7 (𝑏 = 𝑌 → (𝑋 ·s 𝑏) = (𝑋 ·s 𝑌))
2221eleq1d 2817 . . . . . 6 (𝑏 = 𝑌 → ((𝑋 ·s 𝑏) ∈ No ↔ (𝑋 ·s 𝑌) ∈ No ))
2322anbi1d 629 . . . . 5 (𝑏 = 𝑌 → (((𝑋 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2420, 23imbi12d 344 . . . 4 (𝑏 = 𝑌 → ((((( bday 𝑋) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))))
25 fveq2 6891 . . . . . . . . . 10 (𝑐 = 𝑍 → ( bday 𝑐) = ( bday 𝑍))
2625oveq1d 7427 . . . . . . . . 9 (𝑐 = 𝑍 → (( bday 𝑐) +no ( bday 𝑒)) = (( bday 𝑍) +no ( bday 𝑒)))
2726uneq1d 4162 . . . . . . . 8 (𝑐 = 𝑍 → ((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) = ((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))))
2825oveq1d 7427 . . . . . . . . 9 (𝑐 = 𝑍 → (( bday 𝑐) +no ( bday 𝑓)) = (( bday 𝑍) +no ( bday 𝑓)))
2928uneq1d 4162 . . . . . . . 8 (𝑐 = 𝑍 → ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))) = ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))
3027, 29uneq12d 4164 . . . . . . 7 (𝑐 = 𝑍 → (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒)))) = (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒)))))
3130uneq2d 4163 . . . . . 6 (𝑐 = 𝑍 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))))
3231eleq1d 2817 . . . . 5 (𝑐 = 𝑍 → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
33 breq1 5151 . . . . . . . 8 (𝑐 = 𝑍 → (𝑐 <s 𝑑𝑍 <s 𝑑))
3433anbi1d 629 . . . . . . 7 (𝑐 = 𝑍 → ((𝑐 <s 𝑑𝑒 <s 𝑓) ↔ (𝑍 <s 𝑑𝑒 <s 𝑓)))
35 oveq1 7419 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑐 ·s 𝑓) = (𝑍 ·s 𝑓))
36 oveq1 7419 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑐 ·s 𝑒) = (𝑍 ·s 𝑒))
3735, 36oveq12d 7430 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) = ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)))
3837breq1d 5158 . . . . . . 7 (𝑐 = 𝑍 → (((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))
3934, 38imbi12d 344 . . . . . 6 (𝑐 = 𝑍 → (((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))) ↔ ((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))
4039anbi2d 628 . . . . 5 (𝑐 = 𝑍 → (((𝑋 ·s 𝑌) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
4132, 40imbi12d 344 . . . 4 (𝑐 = 𝑍 → ((((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))))
42 fveq2 6891 . . . . . . . . . 10 (𝑑 = 𝑊 → ( bday 𝑑) = ( bday 𝑊))
4342oveq1d 7427 . . . . . . . . 9 (𝑑 = 𝑊 → (( bday 𝑑) +no ( bday 𝑓)) = (( bday 𝑊) +no ( bday 𝑓)))
4443uneq2d 4163 . . . . . . . 8 (𝑑 = 𝑊 → ((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) = ((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))))
4542oveq1d 7427 . . . . . . . . 9 (𝑑 = 𝑊 → (( bday 𝑑) +no ( bday 𝑒)) = (( bday 𝑊) +no ( bday 𝑒)))
4645uneq2d 4163 . . . . . . . 8 (𝑑 = 𝑊 → ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))) = ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))
4744, 46uneq12d 4164 . . . . . . 7 (𝑑 = 𝑊 → (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒)))) = (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒)))))
4847uneq2d 4163 . . . . . 6 (𝑑 = 𝑊 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))))
4948eleq1d 2817 . . . . 5 (𝑑 = 𝑊 → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
50 breq2 5152 . . . . . . . 8 (𝑑 = 𝑊 → (𝑍 <s 𝑑𝑍 <s 𝑊))
5150anbi1d 629 . . . . . . 7 (𝑑 = 𝑊 → ((𝑍 <s 𝑑𝑒 <s 𝑓) ↔ (𝑍 <s 𝑊𝑒 <s 𝑓)))
52 oveq1 7419 . . . . . . . . 9 (𝑑 = 𝑊 → (𝑑 ·s 𝑓) = (𝑊 ·s 𝑓))
53 oveq1 7419 . . . . . . . . 9 (𝑑 = 𝑊 → (𝑑 ·s 𝑒) = (𝑊 ·s 𝑒))
5452, 53oveq12d 7430 . . . . . . . 8 (𝑑 = 𝑊 → ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) = ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))
5554breq2d 5160 . . . . . . 7 (𝑑 = 𝑊 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))
5651, 55imbi12d 344 . . . . . 6 (𝑑 = 𝑊 → (((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))) ↔ ((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))))
5756anbi2d 628 . . . . 5 (𝑑 = 𝑊 → (((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))))
5849, 57imbi12d 344 . . . 4 (𝑑 = 𝑊 → ((((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑑𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))))))
59 fveq2 6891 . . . . . . . . . 10 (𝑒 = 𝑇 → ( bday 𝑒) = ( bday 𝑇))
6059oveq2d 7428 . . . . . . . . 9 (𝑒 = 𝑇 → (( bday 𝑍) +no ( bday 𝑒)) = (( bday 𝑍) +no ( bday 𝑇)))
6160uneq1d 4162 . . . . . . . 8 (𝑒 = 𝑇 → ((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) = ((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))))
6259oveq2d 7428 . . . . . . . . 9 (𝑒 = 𝑇 → (( bday 𝑊) +no ( bday 𝑒)) = (( bday 𝑊) +no ( bday 𝑇)))
6362uneq2d 4163 . . . . . . . 8 (𝑒 = 𝑇 → ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))) = ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))
6461, 63uneq12d 4164 . . . . . . 7 (𝑒 = 𝑇 → (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒)))) = (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇)))))
6564uneq2d 4163 . . . . . 6 (𝑒 = 𝑇 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))))
6665eleq1d 2817 . . . . 5 (𝑒 = 𝑇 → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
67 breq1 5151 . . . . . . . 8 (𝑒 = 𝑇 → (𝑒 <s 𝑓𝑇 <s 𝑓))
6867anbi2d 628 . . . . . . 7 (𝑒 = 𝑇 → ((𝑍 <s 𝑊𝑒 <s 𝑓) ↔ (𝑍 <s 𝑊𝑇 <s 𝑓)))
69 oveq2 7420 . . . . . . . . 9 (𝑒 = 𝑇 → (𝑍 ·s 𝑒) = (𝑍 ·s 𝑇))
7069oveq2d 7428 . . . . . . . 8 (𝑒 = 𝑇 → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) = ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)))
71 oveq2 7420 . . . . . . . . 9 (𝑒 = 𝑇 → (𝑊 ·s 𝑒) = (𝑊 ·s 𝑇))
7271oveq2d 7428 . . . . . . . 8 (𝑒 = 𝑇 → ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)) = ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))
7370, 72breq12d 5161 . . . . . . 7 (𝑒 = 𝑇 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))
7468, 73imbi12d 344 . . . . . 6 (𝑒 = 𝑇 → (((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))) ↔ ((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))))
7574anbi2d 628 . . . . 5 (𝑒 = 𝑇 → (((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))))
7666, 75imbi12d 344 . . . 4 (𝑒 = 𝑇 → ((((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑒)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))) ↔ (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))))))
77 fveq2 6891 . . . . . . . . . 10 (𝑓 = 𝑈 → ( bday 𝑓) = ( bday 𝑈))
7877oveq2d 7428 . . . . . . . . 9 (𝑓 = 𝑈 → (( bday 𝑊) +no ( bday 𝑓)) = (( bday 𝑊) +no ( bday 𝑈)))
7978uneq2d 4163 . . . . . . . 8 (𝑓 = 𝑈 → ((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) = ((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))))
8077oveq2d 7428 . . . . . . . . 9 (𝑓 = 𝑈 → (( bday 𝑍) +no ( bday 𝑓)) = (( bday 𝑍) +no ( bday 𝑈)))
8180uneq1d 4162 . . . . . . . 8 (𝑓 = 𝑈 → ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))) = ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))
8279, 81uneq12d 4164 . . . . . . 7 (𝑓 = 𝑈 → (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇)))) = (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇)))))
8382uneq2d 4163 . . . . . 6 (𝑓 = 𝑈 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))))
8483eleq1d 2817 . . . . 5 (𝑓 = 𝑈 → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ↔ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
85 breq2 5152 . . . . . . . 8 (𝑓 = 𝑈 → (𝑇 <s 𝑓𝑇 <s 𝑈))
8685anbi2d 628 . . . . . . 7 (𝑓 = 𝑈 → ((𝑍 <s 𝑊𝑇 <s 𝑓) ↔ (𝑍 <s 𝑊𝑇 <s 𝑈)))
87 oveq2 7420 . . . . . . . . 9 (𝑓 = 𝑈 → (𝑍 ·s 𝑓) = (𝑍 ·s 𝑈))
8887oveq1d 7427 . . . . . . . 8 (𝑓 = 𝑈 → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) = ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)))
89 oveq2 7420 . . . . . . . . 9 (𝑓 = 𝑈 → (𝑊 ·s 𝑓) = (𝑊 ·s 𝑈))
9089oveq1d 7427 . . . . . . . 8 (𝑓 = 𝑈 → ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)) = ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))
9188, 90breq12d 5161 . . . . . . 7 (𝑓 = 𝑈 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)) ↔ ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))
9286, 91imbi12d 344 . . . . . 6 (𝑓 = 𝑈 → (((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))) ↔ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))
9392anbi2d 628 . . . . 5 (𝑓 = 𝑈 → (((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))) ↔ ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))))
9484, 93imbi12d 344 . . . 4 (𝑓 = 𝑈 → ((((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑓))) ∪ ((( bday 𝑍) +no ( bday 𝑓)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))) ↔ (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))))
9516, 24, 41, 58, 76, 94rspc6v 3631 . . 3 (((𝑋 No 𝑌 No ) ∧ (𝑍 No 𝑊 No ) ∧ (𝑇 No 𝑈 No )) → (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))))
963, 4, 5, 6, 7, 8, 95syl222anc 1385 . 2 (𝜑 → (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))))
971, 2, 96mp2d 49 1 (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  cun 3946   class class class wbr 5148  cfv 6543  (class class class)co 7412   +no cnadd 8670   No csur 27394   <s cslt 27395   bday cbday 27396   -s csubs 27749   ·s cmuls 27816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  mulsproplem2  27827  mulsproplem3  27828  mulsproplem4  27829  mulsproplem5  27830  mulsproplem6  27831  mulsproplem7  27832  mulsproplem8  27833
  Copyright terms: Public domain W3C validator