Proof of Theorem mulsproplem1
| Step | Hyp | Ref
| Expression |
| 1 | | mulsproplem.1 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ No
∀𝑏 ∈ No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 2 | | mulsproplem1.7 |
. 2
⊢ (𝜑 → (((
bday ‘𝑋) +no
( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 3 | | mulsproplem1.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ No
) |
| 4 | | mulsproplem1.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ No
) |
| 5 | | mulsproplem1.3 |
. . 3
⊢ (𝜑 → 𝑍 ∈ No
) |
| 6 | | mulsproplem1.4 |
. . 3
⊢ (𝜑 → 𝑊 ∈ No
) |
| 7 | | mulsproplem1.5 |
. . 3
⊢ (𝜑 → 𝑇 ∈ No
) |
| 8 | | mulsproplem1.6 |
. . 3
⊢ (𝜑 → 𝑈 ∈ No
) |
| 9 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑎 = 𝑋 → ( bday
‘𝑎) = ( bday ‘𝑋)) |
| 10 | 9 | oveq1d 7429 |
. . . . . . 7
⊢ (𝑎 = 𝑋 → (( bday
‘𝑎) +no ( bday ‘𝑏)) = (( bday
‘𝑋) +no ( bday ‘𝑏))) |
| 11 | 10 | uneq1d 4149 |
. . . . . 6
⊢ (𝑎 = 𝑋 → ((( bday
‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) = ((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))))) |
| 12 | 11 | eleq1d 2818 |
. . . . 5
⊢ (𝑎 = 𝑋 → (((( bday
‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 13 | | oveq1 7421 |
. . . . . . 7
⊢ (𝑎 = 𝑋 → (𝑎 ·s 𝑏) = (𝑋 ·s 𝑏)) |
| 14 | 13 | eleq1d 2818 |
. . . . . 6
⊢ (𝑎 = 𝑋 → ((𝑎 ·s 𝑏) ∈ No
↔ (𝑋
·s 𝑏)
∈ No )) |
| 15 | 14 | anbi1d 631 |
. . . . 5
⊢ (𝑎 = 𝑋 → (((𝑎 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 16 | 12, 15 | imbi12d 344 |
. . . 4
⊢ (𝑎 = 𝑋 → ((((( bday
‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))) |
| 17 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑏 = 𝑌 → ( bday
‘𝑏) = ( bday ‘𝑌)) |
| 18 | 17 | oveq2d 7430 |
. . . . . . 7
⊢ (𝑏 = 𝑌 → (( bday
‘𝑋) +no ( bday ‘𝑏)) = (( bday
‘𝑋) +no ( bday ‘𝑌))) |
| 19 | 18 | uneq1d 4149 |
. . . . . 6
⊢ (𝑏 = 𝑌 → ((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) = ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))))) |
| 20 | 19 | eleq1d 2818 |
. . . . 5
⊢ (𝑏 = 𝑌 → (((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 21 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑏 = 𝑌 → (𝑋 ·s 𝑏) = (𝑋 ·s 𝑌)) |
| 22 | 21 | eleq1d 2818 |
. . . . . 6
⊢ (𝑏 = 𝑌 → ((𝑋 ·s 𝑏) ∈ No
↔ (𝑋
·s 𝑌)
∈ No )) |
| 23 | 22 | anbi1d 631 |
. . . . 5
⊢ (𝑏 = 𝑌 → (((𝑋 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 24 | 20, 23 | imbi12d 344 |
. . . 4
⊢ (𝑏 = 𝑌 → ((((( bday
‘𝑋) +no ( bday ‘𝑏)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑏) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))) |
| 25 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑍 → ( bday
‘𝑐) = ( bday ‘𝑍)) |
| 26 | 25 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (( bday
‘𝑐) +no ( bday ‘𝑒)) = (( bday
‘𝑍) +no ( bday ‘𝑒))) |
| 27 | 26 | uneq1d 4149 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) = ((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓)))) |
| 28 | 25 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (( bday
‘𝑐) +no ( bday ‘𝑓)) = (( bday
‘𝑍) +no ( bday ‘𝑓))) |
| 29 | 28 | uneq1d 4149 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))) = ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))) |
| 30 | 27, 29 | uneq12d 4151 |
. . . . . . 7
⊢ (𝑐 = 𝑍 → (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))) = (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) |
| 31 | 30 | uneq2d 4150 |
. . . . . 6
⊢ (𝑐 = 𝑍 → ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) = ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))))) |
| 32 | 31 | eleq1d 2818 |
. . . . 5
⊢ (𝑐 = 𝑍 → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 33 | | breq1 5128 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → (𝑐 <s 𝑑 ↔ 𝑍 <s 𝑑)) |
| 34 | 33 | anbi1d 631 |
. . . . . . 7
⊢ (𝑐 = 𝑍 → ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) ↔ (𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓))) |
| 35 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (𝑐 ·s 𝑓) = (𝑍 ·s 𝑓)) |
| 36 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (𝑐 ·s 𝑒) = (𝑍 ·s 𝑒)) |
| 37 | 35, 36 | oveq12d 7432 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) = ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒))) |
| 38 | 37 | breq1d 5135 |
. . . . . . 7
⊢ (𝑐 = 𝑍 → (((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) |
| 39 | 34, 38 | imbi12d 344 |
. . . . . 6
⊢ (𝑐 = 𝑍 → (((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))) ↔ ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) |
| 40 | 39 | anbi2d 630 |
. . . . 5
⊢ (𝑐 = 𝑍 → (((𝑋 ·s 𝑌) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 41 | 32, 40 | imbi12d 344 |
. . . 4
⊢ (𝑐 = 𝑍 → ((((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))) |
| 42 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑊 → ( bday
‘𝑑) = ( bday ‘𝑊)) |
| 43 | 42 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑑 = 𝑊 → (( bday
‘𝑑) +no ( bday ‘𝑓)) = (( bday
‘𝑊) +no ( bday ‘𝑓))) |
| 44 | 43 | uneq2d 4150 |
. . . . . . . 8
⊢ (𝑑 = 𝑊 → ((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) = ((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓)))) |
| 45 | 42 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑑 = 𝑊 → (( bday
‘𝑑) +no ( bday ‘𝑒)) = (( bday
‘𝑊) +no ( bday ‘𝑒))) |
| 46 | 45 | uneq2d 4150 |
. . . . . . . 8
⊢ (𝑑 = 𝑊 → ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))) = ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒)))) |
| 47 | 44, 46 | uneq12d 4151 |
. . . . . . 7
⊢ (𝑑 = 𝑊 → (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒)))) = (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) |
| 48 | 47 | uneq2d 4150 |
. . . . . 6
⊢ (𝑑 = 𝑊 → ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) = ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒)))))) |
| 49 | 48 | eleq1d 2818 |
. . . . 5
⊢ (𝑑 = 𝑊 → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 50 | | breq2 5129 |
. . . . . . . 8
⊢ (𝑑 = 𝑊 → (𝑍 <s 𝑑 ↔ 𝑍 <s 𝑊)) |
| 51 | 50 | anbi1d 631 |
. . . . . . 7
⊢ (𝑑 = 𝑊 → ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) ↔ (𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓))) |
| 52 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑑 = 𝑊 → (𝑑 ·s 𝑓) = (𝑊 ·s 𝑓)) |
| 53 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑑 = 𝑊 → (𝑑 ·s 𝑒) = (𝑊 ·s 𝑒)) |
| 54 | 52, 53 | oveq12d 7432 |
. . . . . . . 8
⊢ (𝑑 = 𝑊 → ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) = ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))) |
| 55 | 54 | breq2d 5137 |
. . . . . . 7
⊢ (𝑑 = 𝑊 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))) |
| 56 | 51, 55 | imbi12d 344 |
. . . . . 6
⊢ (𝑑 = 𝑊 → (((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))) ↔ ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))) |
| 57 | 56 | anbi2d 630 |
. . . . 5
⊢ (𝑑 = 𝑊 → (((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))))) |
| 58 | 49, 57 | imbi12d 344 |
. . . 4
⊢ (𝑑 = 𝑊 → ((((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))))) |
| 59 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑇 → ( bday
‘𝑒) = ( bday ‘𝑇)) |
| 60 | 59 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑒 = 𝑇 → (( bday
‘𝑍) +no ( bday ‘𝑒)) = (( bday
‘𝑍) +no ( bday ‘𝑇))) |
| 61 | 60 | uneq1d 4149 |
. . . . . . . 8
⊢ (𝑒 = 𝑇 → ((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) = ((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓)))) |
| 62 | 59 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑒 = 𝑇 → (( bday
‘𝑊) +no ( bday ‘𝑒)) = (( bday
‘𝑊) +no ( bday ‘𝑇))) |
| 63 | 62 | uneq2d 4150 |
. . . . . . . 8
⊢ (𝑒 = 𝑇 → ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))) = ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇)))) |
| 64 | 61, 63 | uneq12d 4151 |
. . . . . . 7
⊢ (𝑒 = 𝑇 → (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒)))) = (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) |
| 65 | 64 | uneq2d 4150 |
. . . . . 6
⊢ (𝑒 = 𝑇 → ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) = ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇)))))) |
| 66 | 65 | eleq1d 2818 |
. . . . 5
⊢ (𝑒 = 𝑇 → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 67 | | breq1 5128 |
. . . . . . . 8
⊢ (𝑒 = 𝑇 → (𝑒 <s 𝑓 ↔ 𝑇 <s 𝑓)) |
| 68 | 67 | anbi2d 630 |
. . . . . . 7
⊢ (𝑒 = 𝑇 → ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) ↔ (𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓))) |
| 69 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑒 = 𝑇 → (𝑍 ·s 𝑒) = (𝑍 ·s 𝑇)) |
| 70 | 69 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑒 = 𝑇 → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) = ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇))) |
| 71 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑒 = 𝑇 → (𝑊 ·s 𝑒) = (𝑊 ·s 𝑇)) |
| 72 | 71 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑒 = 𝑇 → ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)) = ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))) |
| 73 | 70, 72 | breq12d 5138 |
. . . . . . 7
⊢ (𝑒 = 𝑇 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)) ↔ ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))) |
| 74 | 68, 73 | imbi12d 344 |
. . . . . 6
⊢ (𝑒 = 𝑇 → (((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))) ↔ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))) |
| 75 | 74 | anbi2d 630 |
. . . . 5
⊢ (𝑒 = 𝑇 → (((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒)))) ↔ ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))))) |
| 76 | 66, 75 | imbi12d 344 |
. . . 4
⊢ (𝑒 = 𝑇 → ((((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑒)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑒))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑒 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑒)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑒))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))))) |
| 77 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑈 → ( bday
‘𝑓) = ( bday ‘𝑈)) |
| 78 | 77 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑓 = 𝑈 → (( bday
‘𝑊) +no ( bday ‘𝑓)) = (( bday
‘𝑊) +no ( bday ‘𝑈))) |
| 79 | 78 | uneq2d 4150 |
. . . . . . . 8
⊢ (𝑓 = 𝑈 → ((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) = ((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈)))) |
| 80 | 77 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑓 = 𝑈 → (( bday
‘𝑍) +no ( bday ‘𝑓)) = (( bday
‘𝑍) +no ( bday ‘𝑈))) |
| 81 | 80 | uneq1d 4149 |
. . . . . . . 8
⊢ (𝑓 = 𝑈 → ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))) = ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇)))) |
| 82 | 79, 81 | uneq12d 4151 |
. . . . . . 7
⊢ (𝑓 = 𝑈 → (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇)))) = (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) |
| 83 | 82 | uneq2d 4150 |
. . . . . 6
⊢ (𝑓 = 𝑈 → ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) = ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇)))))) |
| 84 | 83 | eleq1d 2818 |
. . . . 5
⊢ (𝑓 = 𝑈 → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) ↔ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))))) |
| 85 | | breq2 5129 |
. . . . . . . 8
⊢ (𝑓 = 𝑈 → (𝑇 <s 𝑓 ↔ 𝑇 <s 𝑈)) |
| 86 | 85 | anbi2d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑈 → ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) ↔ (𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈))) |
| 87 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑓 = 𝑈 → (𝑍 ·s 𝑓) = (𝑍 ·s 𝑈)) |
| 88 | 87 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑓 = 𝑈 → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) = ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇))) |
| 89 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑓 = 𝑈 → (𝑊 ·s 𝑓) = (𝑊 ·s 𝑈)) |
| 90 | 89 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑓 = 𝑈 → ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)) = ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))) |
| 91 | 88, 90 | breq12d 5138 |
. . . . . . 7
⊢ (𝑓 = 𝑈 → (((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)) ↔ ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))) |
| 92 | 86, 91 | imbi12d 344 |
. . . . . 6
⊢ (𝑓 = 𝑈 → (((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))) ↔ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))) |
| 93 | 92 | anbi2d 630 |
. . . . 5
⊢ (𝑓 = 𝑈 → (((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇)))) ↔ ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))) |
| 94 | 84, 93 | imbi12d 344 |
. . . 4
⊢ (𝑓 = 𝑈 → ((((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑓))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑓)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑓) → ((𝑍 ·s 𝑓) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑓) -s (𝑊 ·s 𝑇))))) ↔ (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))))) |
| 95 | 16, 24, 41, 58, 76, 94 | rspc6v 3627 |
. . 3
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ) ∧ (𝑍 ∈ No
∧ 𝑊 ∈ No ) ∧ (𝑇 ∈ No
∧ 𝑈 ∈ No )) → (∀𝑎 ∈ No
∀𝑏 ∈ No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))))) |
| 96 | 3, 4, 5, 6, 7, 8, 95 | syl222anc 1387 |
. 2
⊢ (𝜑 → (∀𝑎 ∈
No ∀𝑏 ∈
No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday
‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸))))) → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))))) |
| 97 | 1, 2, 96 | mp2d 49 |
1
⊢ (𝜑 → ((𝑋 ·s 𝑌) ∈ No
∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))) |