MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem4 Structured version   Visualization version   GIF version

Theorem mulsproplem4 28050
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem4.1 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
mulsproplem4.2 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
Assertion
Ref Expression
mulsproplem4 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑎)

Proof of Theorem mulsproplem4
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 oldssno 27805 . . . 4 ( O ‘( bday 𝐴)) ⊆ No
3 mulsproplem4.1 . . . 4 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
42, 3sselid 3954 . . 3 (𝜑𝑋 No )
5 oldssno 27805 . . . 4 ( O ‘( bday 𝐵)) ⊆ No
6 mulsproplem4.2 . . . 4 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
75, 6sselid 3954 . . 3 (𝜑𝑌 No )
8 0sno 27776 . . . 4 0s No
98a1i 11 . . 3 (𝜑 → 0s No )
10 bday0s 27778 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
1110, 10oveq12i 7412 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
12 0elon 6405 . . . . . . . . . . . 12 ∅ ∈ On
13 naddrid 8690 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1412, 13ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
1511, 14eqtri 2757 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1615, 15uneq12i 4139 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
17 un0 4367 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1816, 17eqtri 2757 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1918, 18uneq12i 4139 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
2019, 17eqtri 2757 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
2120uneq2i 4138 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅)
22 un0 4367 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅) = (( bday 𝑋) +no ( bday 𝑌))
2321, 22eqtri 2757 . . . 4 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝑋) +no ( bday 𝑌))
24 oldbdayim 27832 . . . . . . 7 (𝑋 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑋) ∈ ( bday 𝐴))
253, 24syl 17 . . . . . 6 (𝜑 → ( bday 𝑋) ∈ ( bday 𝐴))
26 oldbdayim 27832 . . . . . . 7 (𝑌 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑌) ∈ ( bday 𝐵))
276, 26syl 17 . . . . . 6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝐵))
28 bdayelon 27726 . . . . . . 7 ( bday 𝐴) ∈ On
29 bdayelon 27726 . . . . . . 7 ( bday 𝐵) ∈ On
30 naddel12 8707 . . . . . . 7 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3128, 29, 30mp2an 692 . . . . . 6 ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
3225, 27, 31syl2anc 584 . . . . 5 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
33 elun1 4155 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3432, 33syl 17 . . . 4 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3523, 34eqeltrid 2837 . . 3 (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
361, 4, 7, 9, 9, 9, 9, 35mulsproplem1 28047 . 2 (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3736simpld 494 1 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  cun 3922  c0 4306   class class class wbr 5117  Oncon0 6350  cfv 6528  (class class class)co 7400   +no cnadd 8672   No csur 27589   <s cslt 27590   bday cbday 27591   0s c0s 27772   O cold 27787   -s csubs 27957   ·s cmuls 28037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-1o 8475  df-2o 8476  df-nadd 8673  df-no 27592  df-slt 27593  df-bday 27594  df-sslt 27731  df-scut 27733  df-0s 27774  df-made 27791  df-old 27792
This theorem is referenced by:  mulsproplem5  28051  mulsproplem6  28052  mulsproplem7  28053  mulsproplem8  28054  mulsproplem9  28055
  Copyright terms: Public domain W3C validator