MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem4 Structured version   Visualization version   GIF version

Theorem mulsproplem4 28022
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem4.1 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
mulsproplem4.2 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
Assertion
Ref Expression
mulsproplem4 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑎)

Proof of Theorem mulsproplem4
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 oldssno 27769 . . . 4 ( O ‘( bday 𝐴)) ⊆ No
3 mulsproplem4.1 . . . 4 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
42, 3sselid 3944 . . 3 (𝜑𝑋 No )
5 oldssno 27769 . . . 4 ( O ‘( bday 𝐵)) ⊆ No
6 mulsproplem4.2 . . . 4 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
75, 6sselid 3944 . . 3 (𝜑𝑌 No )
8 0sno 27738 . . . 4 0s No
98a1i 11 . . 3 (𝜑 → 0s No )
10 bday0s 27740 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
1110, 10oveq12i 7399 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
12 0elon 6387 . . . . . . . . . . . 12 ∅ ∈ On
13 naddrid 8647 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1412, 13ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
1511, 14eqtri 2752 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1615, 15uneq12i 4129 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
17 un0 4357 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1816, 17eqtri 2752 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1918, 18uneq12i 4129 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
2019, 17eqtri 2752 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
2120uneq2i 4128 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅)
22 un0 4357 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅) = (( bday 𝑋) +no ( bday 𝑌))
2321, 22eqtri 2752 . . . 4 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝑋) +no ( bday 𝑌))
24 oldbdayim 27800 . . . . . . 7 (𝑋 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑋) ∈ ( bday 𝐴))
253, 24syl 17 . . . . . 6 (𝜑 → ( bday 𝑋) ∈ ( bday 𝐴))
26 oldbdayim 27800 . . . . . . 7 (𝑌 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑌) ∈ ( bday 𝐵))
276, 26syl 17 . . . . . 6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝐵))
28 bdayelon 27688 . . . . . . 7 ( bday 𝐴) ∈ On
29 bdayelon 27688 . . . . . . 7 ( bday 𝐵) ∈ On
30 naddel12 8664 . . . . . . 7 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3128, 29, 30mp2an 692 . . . . . 6 ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
3225, 27, 31syl2anc 584 . . . . 5 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
33 elun1 4145 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3432, 33syl 17 . . . 4 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3523, 34eqeltrid 2832 . . 3 (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
361, 4, 7, 9, 9, 9, 9, 35mulsproplem1 28019 . 2 (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3736simpld 494 1 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3912  c0 4296   class class class wbr 5107  Oncon0 6332  cfv 6511  (class class class)co 7387   +no cnadd 8629   No csur 27551   <s cslt 27552   bday cbday 27553   0s c0s 27734   O cold 27751   -s csubs 27926   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756
This theorem is referenced by:  mulsproplem5  28023  mulsproplem6  28024  mulsproplem7  28025  mulsproplem8  28026  mulsproplem9  28027
  Copyright terms: Public domain W3C validator