MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem4 Structured version   Visualization version   GIF version

Theorem mulsproplem4 28029
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem4.1 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
mulsproplem4.2 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
Assertion
Ref Expression
mulsproplem4 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑎)

Proof of Theorem mulsproplem4
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 oldssno 27776 . . . 4 ( O ‘( bday 𝐴)) ⊆ No
3 mulsproplem4.1 . . . 4 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
42, 3sselid 3947 . . 3 (𝜑𝑋 No )
5 oldssno 27776 . . . 4 ( O ‘( bday 𝐵)) ⊆ No
6 mulsproplem4.2 . . . 4 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
75, 6sselid 3947 . . 3 (𝜑𝑌 No )
8 0sno 27745 . . . 4 0s No
98a1i 11 . . 3 (𝜑 → 0s No )
10 bday0s 27747 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
1110, 10oveq12i 7402 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
12 0elon 6390 . . . . . . . . . . . 12 ∅ ∈ On
13 naddrid 8650 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1412, 13ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
1511, 14eqtri 2753 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1615, 15uneq12i 4132 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
17 un0 4360 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1816, 17eqtri 2753 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1918, 18uneq12i 4132 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
2019, 17eqtri 2753 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
2120uneq2i 4131 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅)
22 un0 4360 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∪ ∅) = (( bday 𝑋) +no ( bday 𝑌))
2321, 22eqtri 2753 . . . 4 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝑋) +no ( bday 𝑌))
24 oldbdayim 27807 . . . . . . 7 (𝑋 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑋) ∈ ( bday 𝐴))
253, 24syl 17 . . . . . 6 (𝜑 → ( bday 𝑋) ∈ ( bday 𝐴))
26 oldbdayim 27807 . . . . . . 7 (𝑌 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑌) ∈ ( bday 𝐵))
276, 26syl 17 . . . . . 6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝐵))
28 bdayelon 27695 . . . . . . 7 ( bday 𝐴) ∈ On
29 bdayelon 27695 . . . . . . 7 ( bday 𝐵) ∈ On
30 naddel12 8667 . . . . . . 7 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
3128, 29, 30mp2an 692 . . . . . 6 ((( bday 𝑋) ∈ ( bday 𝐴) ∧ ( bday 𝑌) ∈ ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
3225, 27, 31syl2anc 584 . . . . 5 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
33 elun1 4148 . . . . 5 ((( bday 𝑋) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3432, 33syl 17 . . . 4 (𝜑 → (( bday 𝑋) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3523, 34eqeltrid 2833 . . 3 (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
361, 4, 7, 9, 9, 9, 9, 35mulsproplem1 28026 . 2 (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3736simpld 494 1 (𝜑 → (𝑋 ·s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cun 3915  c0 4299   class class class wbr 5110  Oncon0 6335  cfv 6514  (class class class)co 7390   +no cnadd 8632   No csur 27558   <s cslt 27559   bday cbday 27560   0s c0s 27741   O cold 27758   -s csubs 27933   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763
This theorem is referenced by:  mulsproplem5  28030  mulsproplem6  28031  mulsproplem7  28032  mulsproplem8  28033  mulsproplem9  28034
  Copyright terms: Public domain W3C validator