Proof of Theorem mulsproplem7
| Step | Hyp | Ref
| Expression |
| 1 | | rightssno 27850 |
. . . 4
⊢ ( R
‘𝐵) ⊆ No |
| 2 | | mulsproplem7.4 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) |
| 3 | 1, 2 | sselid 3961 |
. . 3
⊢ (𝜑 → 𝑆 ∈ No
) |
| 4 | | mulsproplem7.6 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) |
| 5 | 1, 4 | sselid 3961 |
. . 3
⊢ (𝜑 → 𝑈 ∈ No
) |
| 6 | | sltlin 27718 |
. . 3
⊢ ((𝑆 ∈
No ∧ 𝑈 ∈
No ) → (𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆)) |
| 7 | 3, 5, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆)) |
| 8 | | mulsproplem.1 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈ No
∀𝑏 ∈ No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 9 | | rightssold 27848 |
. . . . . . . . . 10
⊢ ( R
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) |
| 10 | | mulsproplem7.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) |
| 11 | 9, 10 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ( O ‘(
bday ‘𝐴))) |
| 12 | | mulsproplem7.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ No
) |
| 13 | 8, 11, 12 | mulsproplem2 28077 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·s 𝐵) ∈ No
) |
| 14 | | mulsproplem7.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ No
) |
| 15 | | rightssold 27848 |
. . . . . . . . . 10
⊢ ( R
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) |
| 16 | 15, 2 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ( O ‘(
bday ‘𝐵))) |
| 17 | 8, 14, 16 | mulsproplem3 28078 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑆) ∈ No
) |
| 18 | 13, 17 | addscld 27944 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
| 19 | 8, 11, 16 | mulsproplem4 28079 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ·s 𝑆) ∈ No
) |
| 20 | 18, 19 | subscld 28024 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 22 | | leftssold 27847 |
. . . . . . . . . 10
⊢ ( L
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) |
| 23 | | mulsproplem7.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) |
| 24 | 22, 23 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ ( O ‘(
bday ‘𝐴))) |
| 25 | 8, 24, 12 | mulsproplem2 28077 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ·s 𝐵) ∈ No
) |
| 26 | 25, 17 | addscld 27944 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
| 27 | 8, 24, 16 | mulsproplem4 28079 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑆) ∈ No
) |
| 28 | 26, 27 | subscld 28024 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) ∈ No
) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) ∈ No
) |
| 30 | 15, 4 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ( O ‘(
bday ‘𝐵))) |
| 31 | 8, 14, 30 | mulsproplem3 28078 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑈) ∈ No
) |
| 32 | 25, 31 | addscld 27944 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈ No
) |
| 33 | 8, 24, 30 | mulsproplem4 28079 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑈) ∈ No
) |
| 34 | 32, 33 | subscld 28024 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
| 35 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
| 36 | | lltropt 27841 |
. . . . . . . . . . 11
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
| 37 | 36 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 38 | 37, 23, 10 | ssltsepcd 27763 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 <s 𝑅) |
| 39 | | ssltright 27840 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → {𝐵}
<<s ( R ‘𝐵)) |
| 40 | 12, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐵} <<s ( R ‘𝐵)) |
| 41 | | snidg 4641 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → 𝐵 ∈
{𝐵}) |
| 42 | 12, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
| 43 | 40, 42, 2 | ssltsepcd 27763 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 <s 𝑆) |
| 44 | | 0sno 27795 |
. . . . . . . . . . . 12
⊢
0s ∈ No |
| 45 | 44 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0s ∈ No ) |
| 46 | | leftssno 27849 |
. . . . . . . . . . . 12
⊢ ( L
‘𝐴) ⊆ No |
| 47 | 46, 23 | sselid 3961 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ No
) |
| 48 | | rightssno 27850 |
. . . . . . . . . . . 12
⊢ ( R
‘𝐴) ⊆ No |
| 49 | 48, 10 | sselid 3961 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ No
) |
| 50 | | bday0s 27797 |
. . . . . . . . . . . . . . . 16
⊢ ( bday ‘ 0s ) = ∅ |
| 51 | 50, 50 | oveq12i 7422 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no
∅) |
| 52 | | 0elon 6412 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ On |
| 53 | | naddrid 8700 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ On → (∅ +no ∅) = ∅) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (∅
+no ∅) = ∅ |
| 55 | 51, 54 | eqtri 2759 |
. . . . . . . . . . . . . 14
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) =
∅ |
| 56 | 55 | uneq1i 4144 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) |
| 57 | | 0un 4376 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 58 | 56, 57 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 59 | | oldbdayim 27857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑇) ∈
( bday ‘𝐴)) |
| 60 | 24, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑇)
∈ ( bday ‘𝐴)) |
| 61 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑇) ∈ On |
| 62 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐴) ∈ On |
| 63 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐵) ∈ On |
| 64 | | naddel1 8704 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑇)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑇) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 65 | 61, 62, 63, 64 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑇) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 66 | 60, 65 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 67 | | oldbdayim 27857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑅) ∈
( bday ‘𝐴)) |
| 68 | 11, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑅)
∈ ( bday ‘𝐴)) |
| 69 | | oldbdayim 27857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑆) ∈
( bday ‘𝐵)) |
| 70 | 16, 69 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑆)
∈ ( bday ‘𝐵)) |
| 71 | | naddel12 8717 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 72 | 62, 63, 71 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 73 | 68, 70, 72 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 74 | 66, 73 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 75 | | naddel12 8717 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 76 | 62, 63, 75 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 77 | 60, 70, 76 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 78 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑅) ∈ On |
| 79 | | naddel1 8704 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑅)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 80 | 78, 62, 63, 79 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑅) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 81 | 68, 80 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 82 | 77, 81 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 83 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On) |
| 84 | 61, 63, 83 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On |
| 85 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . . 18
⊢ ( bday ‘𝑆) ∈ On |
| 86 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On) |
| 87 | 78, 85, 86 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On |
| 88 | 84, 87 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
| 89 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
On) |
| 90 | 61, 85, 89 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
On |
| 91 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On) |
| 92 | 78, 63, 91 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On |
| 93 | 90, 92 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On |
| 94 | | naddcl 8694 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) |
| 95 | 62, 63, 94 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On |
| 96 | | onunel 6464 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 97 | 88, 93, 95, 96 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 98 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 99 | 84, 87, 95, 98 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 100 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 101 | 90, 92, 95, 100 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 102 | 99, 101 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 103 | 97, 102 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 104 | 74, 82, 103 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 105 | | elun1 4162 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 107 | 58, 106 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 108 | 8, 45, 45, 47, 49, 12, 3, 107 | mulsproplem1 28076 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))))) |
| 109 | 108 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))) |
| 110 | 38, 43, 109 | mp2and 699 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))) |
| 111 | 27, 25, 19, 13 | sltsubsub2bd 28045 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)))) |
| 112 | 13, 19 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 113 | 25, 27 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) ∈ No
) |
| 114 | 112, 113,
17 | sltadd1d 27962 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
| 115 | 111, 114 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
| 116 | 110, 115 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 117 | 13, 17, 19 | addsubsd 28043 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 118 | 25, 17, 27 | addsubsd 28043 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 119 | 116, 117,
118 | 3brtr4d 5156 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆))) |
| 120 | 119 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆))) |
| 121 | | ssltleft 27839 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → ( L ‘𝐴) <<s {𝐴}) |
| 122 | 14, 121 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐴) <<s {𝐴}) |
| 123 | | snidg 4641 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → 𝐴 ∈
{𝐴}) |
| 124 | 14, 123 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 125 | 122, 23, 124 | ssltsepcd 27763 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 <s 𝐴) |
| 126 | 55 | uneq1i 4144 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) |
| 127 | | 0un 4376 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) |
| 128 | 126, 127 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) |
| 129 | | oldbdayim 27857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑈) ∈
( bday ‘𝐵)) |
| 130 | 30, 129 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑈)
∈ ( bday ‘𝐵)) |
| 131 | | bdayelon 27745 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑈) ∈ On |
| 132 | | naddel2 8705 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑈) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑈)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 133 | 131, 63, 62, 132 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑈) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 134 | 130, 133 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 135 | 77, 134 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 136 | | naddel12 8717 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 137 | 62, 63, 136 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 138 | 60, 130, 137 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 139 | | naddel2 8705 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑆) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑆)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 140 | 85, 63, 62, 139 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑆) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 141 | 70, 140 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 142 | 138, 141 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 143 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On) |
| 144 | 62, 131, 143 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On |
| 145 | 90, 144 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On |
| 146 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On) |
| 147 | 61, 131, 146 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On |
| 148 | | naddcl 8694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On) |
| 149 | 62, 85, 148 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On |
| 150 | 147, 149 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
On |
| 151 | | onunel 6464 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 152 | 145, 150,
95, 151 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 153 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 154 | 90, 144, 95, 153 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 155 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 156 | 147, 149,
95, 155 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 157 | 154, 156 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 158 | 152, 157 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 159 | 135, 142,
158 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 160 | | elun1 4162 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 162 | 128, 161 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 163 | 8, 45, 45, 47, 14, 3, 5, 162 | mulsproplem1 28076 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆))))) |
| 164 | 163 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)))) |
| 165 | 125, 164 | mpand 695 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 <s 𝑈 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)))) |
| 166 | 165 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆))) |
| 167 | 33, 31, 27, 17 | sltsubsub3bd 28046 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
| 168 | 17, 27 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) ∈ No
) |
| 169 | 31, 33 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ∈ No
) |
| 170 | 168, 169,
25 | sltadd2d 27961 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
| 171 | 167, 170 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
| 172 | 171 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
| 173 | 166, 172 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
| 174 | 25, 17, 27 | addsubsassd 28042 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)))) |
| 175 | 174 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)))) |
| 176 | 25, 31, 33 | addsubsassd 28042 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
| 177 | 176 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
| 178 | 173, 175,
177 | 3brtr4d 5156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
| 179 | 21, 29, 35, 120, 178 | slttrd 27728 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
| 180 | 179 | ex 412 |
. . 3
⊢ (𝜑 → (𝑆 <s 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
| 181 | 40, 42, 4 | ssltsepcd 27763 |
. . . . . . 7
⊢ (𝜑 → 𝐵 <s 𝑈) |
| 182 | 55 | uneq1i 4144 |
. . . . . . . . . . 11
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) |
| 183 | | 0un 4376 |
. . . . . . . . . . 11
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 184 | 182, 183 | eqtri 2759 |
. . . . . . . . . 10
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 185 | | naddel12 8717 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 186 | 62, 63, 185 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 187 | 68, 130, 186 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 188 | 66, 187 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 189 | 138, 81 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 190 | | naddcl 8694 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
On) |
| 191 | 78, 131, 190 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
On |
| 192 | 84, 191 | onun2i 6481 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On |
| 193 | 147, 92 | onun2i 6481 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On |
| 194 | | onunel 6464 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 195 | 192, 193,
95, 194 | mp3an 1463 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 196 | | onunel 6464 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 197 | 84, 191, 95, 196 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 198 | | onunel 6464 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 199 | 147, 92, 95, 198 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 200 | 197, 199 | anbi12i 628 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 201 | 195, 200 | bitri 275 |
. . . . . . . . . . . 12
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 202 | 188, 189,
201 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 203 | | elun1 4162 |
. . . . . . . . . . 11
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 204 | 202, 203 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 205 | 184, 204 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 206 | 8, 45, 45, 47, 49, 12, 5, 205 | mulsproplem1 28076 |
. . . . . . . 8
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵))))) |
| 207 | 206 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)))) |
| 208 | 38, 181, 207 | mp2and 699 |
. . . . . 6
⊢ (𝜑 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵))) |
| 209 | 8, 11, 30 | mulsproplem4 28079 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·s 𝑈) ∈ No
) |
| 210 | 33, 25, 209, 13 | sltsubsub2bd 28045 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)))) |
| 211 | 13, 209 | subscld 28024 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) ∈ No
) |
| 212 | 25, 33 | subscld 28024 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ∈ No
) |
| 213 | 211, 212,
31 | sltadd1d 27962 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) |
| 214 | 210, 213 | bitrd 279 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) |
| 215 | 208, 214 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
| 216 | 13, 31, 209 | addsubsd 28043 |
. . . . 5
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
| 217 | 25, 31, 33 | addsubsd 28043 |
. . . . 5
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
| 218 | 215, 216,
217 | 3brtr4d 5156 |
. . . 4
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
| 219 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑆 = 𝑈 → (𝐴 ·s 𝑆) = (𝐴 ·s 𝑈)) |
| 220 | 219 | oveq2d 7426 |
. . . . . 6
⊢ (𝑆 = 𝑈 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈))) |
| 221 | | oveq2 7418 |
. . . . . 6
⊢ (𝑆 = 𝑈 → (𝑅 ·s 𝑆) = (𝑅 ·s 𝑈)) |
| 222 | 220, 221 | oveq12d 7428 |
. . . . 5
⊢ (𝑆 = 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈))) |
| 223 | 222 | breq1d 5134 |
. . . 4
⊢ (𝑆 = 𝑈 → ((((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ↔ (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
| 224 | 218, 223 | syl5ibrcom 247 |
. . 3
⊢ (𝜑 → (𝑆 = 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
| 225 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 226 | 13, 31 | addscld 27944 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈ No
) |
| 227 | 226, 209 | subscld 28024 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) ∈ No
) |
| 228 | 227 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) ∈ No
) |
| 229 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
| 230 | | ssltright 27840 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → {𝐴}
<<s ( R ‘𝐴)) |
| 231 | 14, 230 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} <<s ( R ‘𝐴)) |
| 232 | 231, 124,
10 | ssltsepcd 27763 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 <s 𝑅) |
| 233 | 55 | uneq1i 4144 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(∅ ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) |
| 234 | | 0un 4376 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) |
| 235 | 233, 234 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) |
| 236 | 134, 73 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 237 | 141, 187 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 238 | 144, 87 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
| 239 | 149, 191 | onun2i 6481 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On |
| 240 | | onunel 6464 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 241 | 238, 239,
95, 240 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 242 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 243 | 144, 87, 95, 242 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 244 | | onunel 6464 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 245 | 149, 191,
95, 244 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 246 | 243, 245 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 247 | 241, 246 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 248 | 236, 237,
247 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 249 | | elun1 4162 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 250 | 248, 249 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 251 | 235, 250 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝐴) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 252 | 8, 45, 45, 14, 49, 5, 3, 251 | mulsproplem1 28076 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈))))) |
| 253 | 252 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)))) |
| 254 | 232, 253 | mpand 695 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 <s 𝑆 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)))) |
| 255 | 254 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈))) |
| 256 | 17, 19, 31, 209 | sltsubsubbd 28044 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
| 257 | 17, 19 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 258 | 31, 209 | subscld 28024 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)) ∈ No
) |
| 259 | 257, 258,
13 | sltadd2d 27961 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
| 260 | 256, 259 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
| 261 | 260 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
| 262 | 255, 261 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
| 263 | 13, 17, 19 | addsubsassd 28042 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)))) |
| 264 | 263 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)))) |
| 265 | 13, 31, 209 | addsubsassd 28042 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
| 266 | 265 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
| 267 | 262, 264,
266 | 3brtr4d 5156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈))) |
| 268 | 218 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
| 269 | 225, 228,
229, 267, 268 | slttrd 27728 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
| 270 | 269 | ex 412 |
. . 3
⊢ (𝜑 → (𝑈 <s 𝑆 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
| 271 | 180, 224,
270 | 3jaod 1431 |
. 2
⊢ (𝜑 → ((𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
| 272 | 7, 271 | mpd 15 |
1
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |