Proof of Theorem mulsproplem7
Step | Hyp | Ref
| Expression |
1 | | rightssno 27305 |
. . . 4
⊢ ( R
‘𝐵) ⊆ No |
2 | | mulsproplem7.4 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) |
3 | 1, 2 | sselid 3977 |
. . 3
⊢ (𝜑 → 𝑆 ∈ No
) |
4 | | mulsproplem7.6 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) |
5 | 1, 4 | sselid 3977 |
. . 3
⊢ (𝜑 → 𝑈 ∈ No
) |
6 | | sltlin 27181 |
. . 3
⊢ ((𝑆 ∈
No ∧ 𝑈 ∈
No ) → (𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆)) |
7 | 3, 5, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆)) |
8 | | mulsproplem.1 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈ No
∀𝑏 ∈ No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
9 | | rightssold 27303 |
. . . . . . . . . 10
⊢ ( R
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) |
10 | | mulsproplem7.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) |
11 | 9, 10 | sselid 3977 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ( O ‘(
bday ‘𝐴))) |
12 | | mulsproplem7.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ No
) |
13 | 8, 11, 12 | mulsproplem2 27502 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·s 𝐵) ∈ No
) |
14 | | mulsproplem7.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ No
) |
15 | | rightssold 27303 |
. . . . . . . . . 10
⊢ ( R
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) |
16 | 15, 2 | sselid 3977 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ( O ‘(
bday ‘𝐵))) |
17 | 8, 14, 16 | mulsproplem3 27503 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑆) ∈ No
) |
18 | 13, 17 | addscld 27393 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
19 | 8, 11, 16 | mulsproplem4 27504 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ·s 𝑆) ∈ No
) |
20 | 18, 19 | subscld 27464 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
22 | | leftssold 27302 |
. . . . . . . . . 10
⊢ ( L
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) |
23 | | mulsproplem7.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) |
24 | 22, 23 | sselid 3977 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ ( O ‘(
bday ‘𝐴))) |
25 | 8, 24, 12 | mulsproplem2 27502 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ·s 𝐵) ∈ No
) |
26 | 25, 17 | addscld 27393 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
27 | 8, 24, 16 | mulsproplem4 27504 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑆) ∈ No
) |
28 | 26, 27 | subscld 27464 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) ∈ No
) |
29 | 28 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) ∈ No
) |
30 | 15, 4 | sselid 3977 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ( O ‘(
bday ‘𝐵))) |
31 | 8, 14, 30 | mulsproplem3 27503 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑈) ∈ No
) |
32 | 25, 31 | addscld 27393 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈ No
) |
33 | 8, 24, 30 | mulsproplem4 27504 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑈) ∈ No
) |
34 | 32, 33 | subscld 27464 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
36 | | lltropt 27296 |
. . . . . . . . . . 11
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
37 | 36 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
38 | 37, 23, 10 | ssltsepcd 27224 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 <s 𝑅) |
39 | | ssltright 27295 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → {𝐵}
<<s ( R ‘𝐵)) |
40 | 12, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐵} <<s ( R ‘𝐵)) |
41 | | snidg 4657 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → 𝐵 ∈
{𝐵}) |
42 | 12, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
43 | 40, 42, 2 | ssltsepcd 27224 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 <s 𝑆) |
44 | | 0sno 27256 |
. . . . . . . . . . . 12
⊢
0s ∈ No |
45 | 44 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0s ∈ No ) |
46 | | leftssno 27304 |
. . . . . . . . . . . 12
⊢ ( L
‘𝐴) ⊆ No |
47 | 46, 23 | sselid 3977 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ No
) |
48 | | rightssno 27305 |
. . . . . . . . . . . 12
⊢ ( R
‘𝐴) ⊆ No |
49 | 48, 10 | sselid 3977 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ No
) |
50 | | bday0s 27258 |
. . . . . . . . . . . . . . . 16
⊢ ( bday ‘ 0s ) = ∅ |
51 | 50, 50 | oveq12i 7406 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no
∅) |
52 | | 0elon 6408 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ On |
53 | | naddrid 8667 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ On → (∅ +no ∅) = ∅) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (∅
+no ∅) = ∅ |
55 | 51, 54 | eqtri 2760 |
. . . . . . . . . . . . . 14
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) =
∅ |
56 | 55 | uneq1i 4156 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) |
57 | | 0un 4389 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
58 | 56, 57 | eqtri 2760 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
59 | | oldbdayim 27312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑇) ∈
( bday ‘𝐴)) |
60 | 24, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑇)
∈ ( bday ‘𝐴)) |
61 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑇) ∈ On |
62 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐴) ∈ On |
63 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐵) ∈ On |
64 | | naddel1 8671 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑇)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑇) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
65 | 61, 62, 63, 64 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑇) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
66 | 60, 65 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
67 | | oldbdayim 27312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑅) ∈
( bday ‘𝐴)) |
68 | 11, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑅)
∈ ( bday ‘𝐴)) |
69 | | oldbdayim 27312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑆) ∈
( bday ‘𝐵)) |
70 | 16, 69 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑆)
∈ ( bday ‘𝐵)) |
71 | | naddel12 8684 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
72 | 62, 63, 71 | mp2an 690 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
73 | 68, 70, 72 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
74 | 66, 73 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
75 | | naddel12 8684 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
76 | 62, 63, 75 | mp2an 690 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
77 | 60, 70, 76 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
78 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑅) ∈ On |
79 | | naddel1 8671 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑅)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
80 | 78, 62, 63, 79 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑅) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
81 | 68, 80 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
82 | 77, 81 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
83 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On) |
84 | 61, 63, 83 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On |
85 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . . 18
⊢ ( bday ‘𝑆) ∈ On |
86 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On) |
87 | 78, 85, 86 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On |
88 | 84, 87 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
89 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
On) |
90 | 61, 85, 89 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
On |
91 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On) |
92 | 78, 63, 91 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On |
93 | 90, 92 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On |
94 | | naddcl 8661 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) |
95 | 62, 63, 94 | mp2an 690 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On |
96 | | onunel 6459 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
97 | 88, 93, 95, 96 | mp3an 1461 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
98 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
99 | 84, 87, 95, 98 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
100 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
101 | 90, 92, 95, 100 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
102 | 99, 101 | anbi12i 627 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
103 | 97, 102 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
104 | 74, 82, 103 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
105 | | elun1 4173 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
107 | 58, 106 | eqeltrid 2837 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
108 | 8, 45, 45, 47, 49, 12, 3, 107 | mulsproplem1 27501 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))))) |
109 | 108 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))) |
110 | 38, 43, 109 | mp2and 697 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))) |
111 | 27, 25, 19, 13 | sltsubsub2bd 27480 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)))) |
112 | 13, 19 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) ∈ No
) |
113 | 25, 27 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) ∈ No
) |
114 | 112, 113,
17 | sltadd1d 27410 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
115 | 111, 114 | bitrd 278 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑆) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
116 | 110, 115 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
117 | 13, 17, 19 | addsubsd 27478 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
118 | 25, 17, 27 | addsubsd 27478 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
119 | 116, 117,
118 | 3brtr4d 5174 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆))) |
120 | 119 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆))) |
121 | | ssltleft 27294 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → ( L ‘𝐴) <<s {𝐴}) |
122 | 14, 121 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐴) <<s {𝐴}) |
123 | | snidg 4657 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → 𝐴 ∈
{𝐴}) |
124 | 14, 123 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
125 | 122, 23, 124 | ssltsepcd 27224 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 <s 𝐴) |
126 | 55 | uneq1i 4156 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) |
127 | | 0un 4389 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) |
128 | 126, 127 | eqtri 2760 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) |
129 | | oldbdayim 27312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑈) ∈
( bday ‘𝐵)) |
130 | 30, 129 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑈)
∈ ( bday ‘𝐵)) |
131 | | bdayelon 27207 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑈) ∈ On |
132 | | naddel2 8672 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑈) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑈)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
133 | 131, 63, 62, 132 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑈) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
134 | 130, 133 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
135 | 77, 134 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
136 | | naddel12 8684 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
137 | 62, 63, 136 | mp2an 690 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
138 | 60, 130, 137 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
139 | | naddel2 8672 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑆) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑆)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
140 | 85, 63, 62, 139 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑆) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
141 | 70, 140 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
142 | 138, 141 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
143 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On) |
144 | 62, 131, 143 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On |
145 | 90, 144 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On |
146 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On) |
147 | 61, 131, 146 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On |
148 | | naddcl 8661 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On) |
149 | 62, 85, 148 | mp2an 690 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On |
150 | 147, 149 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
On |
151 | | onunel 6459 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
152 | 145, 150,
95, 151 | mp3an 1461 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
153 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
154 | 90, 144, 95, 153 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
155 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
156 | 147, 149,
95, 155 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
157 | 154, 156 | anbi12i 627 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
158 | 152, 157 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
159 | 135, 142,
158 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
160 | | elun1 4173 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝑆)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑆)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
161 | 159, 160 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
162 | 128, 161 | eqeltrid 2837 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝑆)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑆))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
163 | 8, 45, 45, 47, 14, 3, 5, 162 | mulsproplem1 27501 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆))))) |
164 | 163 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝐴 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)))) |
165 | 125, 164 | mpand 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 <s 𝑈 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)))) |
166 | 165 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆))) |
167 | 33, 31, 27, 17 | sltsubsub3bd 27481 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
168 | 17, 27 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) ∈ No
) |
169 | 31, 33 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ∈ No
) |
170 | 168, 169,
25 | sltadd2d 27409 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
171 | 167, 170 | bitrd 278 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
172 | 171 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑆)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) |
173 | 166, 172 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
174 | 25, 17, 27 | addsubsassd 27477 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)))) |
175 | 174 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑇 ·s 𝑆)))) |
176 | 25, 31, 33 | addsubsassd 27477 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
177 | 176 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) |
178 | 173, 175,
177 | 3brtr4d 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑇 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
179 | 21, 29, 35, 120, 178 | slttrd 27191 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 <s 𝑈) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
180 | 179 | ex 413 |
. . 3
⊢ (𝜑 → (𝑆 <s 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
181 | 40, 42, 4 | ssltsepcd 27224 |
. . . . . . 7
⊢ (𝜑 → 𝐵 <s 𝑈) |
182 | 55 | uneq1i 4156 |
. . . . . . . . . . 11
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) |
183 | | 0un 4389 |
. . . . . . . . . . 11
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
184 | 182, 183 | eqtri 2760 |
. . . . . . . . . 10
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
185 | | naddel12 8684 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
186 | 62, 63, 185 | mp2an 690 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
187 | 68, 130, 186 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
188 | 66, 187 | jca 512 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
189 | 138, 81 | jca 512 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
190 | | naddcl 8661 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
On) |
191 | 78, 131, 190 | mp2an 690 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
On |
192 | 84, 191 | onun2i 6476 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On |
193 | 147, 92 | onun2i 6476 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On |
194 | | onunel 6459 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
195 | 192, 193,
95, 194 | mp3an 1461 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
196 | | onunel 6459 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
197 | 84, 191, 95, 196 | mp3an 1461 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
198 | | onunel 6459 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
199 | 147, 92, 95, 198 | mp3an 1461 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
200 | 197, 199 | anbi12i 627 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
201 | 195, 200 | bitri 274 |
. . . . . . . . . . . 12
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
202 | 188, 189,
201 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
203 | | elun1 4173 |
. . . . . . . . . . 11
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
204 | 202, 203 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
205 | 184, 204 | eqeltrid 2837 |
. . . . . . . . 9
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
206 | 8, 45, 45, 47, 49, 12, 5, 205 | mulsproplem1 27501 |
. . . . . . . 8
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵))))) |
207 | 206 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 <s 𝑅 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)))) |
208 | 38, 181, 207 | mp2and 697 |
. . . . . 6
⊢ (𝜑 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵))) |
209 | 8, 11, 30 | mulsproplem4 27504 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·s 𝑈) ∈ No
) |
210 | 33, 25, 209, 13 | sltsubsub2bd 27480 |
. . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)))) |
211 | 13, 209 | subscld 27464 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) ∈ No
) |
212 | 25, 33 | subscld 27464 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ∈ No
) |
213 | 211, 212,
31 | sltadd1d 27410 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) |
214 | 210, 213 | bitrd 278 |
. . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑅 ·s 𝑈) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) |
215 | 208, 214 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
216 | 13, 31, 209 | addsubsd 27478 |
. . . . 5
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
217 | 25, 31, 33 | addsubsd 27478 |
. . . . 5
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) |
218 | 215, 216,
217 | 3brtr4d 5174 |
. . . 4
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
219 | | oveq2 7402 |
. . . . . . 7
⊢ (𝑆 = 𝑈 → (𝐴 ·s 𝑆) = (𝐴 ·s 𝑈)) |
220 | 219 | oveq2d 7410 |
. . . . . 6
⊢ (𝑆 = 𝑈 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈))) |
221 | | oveq2 7402 |
. . . . . 6
⊢ (𝑆 = 𝑈 → (𝑅 ·s 𝑆) = (𝑅 ·s 𝑈)) |
222 | 220, 221 | oveq12d 7412 |
. . . . 5
⊢ (𝑆 = 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈))) |
223 | 222 | breq1d 5152 |
. . . 4
⊢ (𝑆 = 𝑈 → ((((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ↔ (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
224 | 218, 223 | syl5ibrcom 246 |
. . 3
⊢ (𝜑 → (𝑆 = 𝑈 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
225 | 20 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
226 | 13, 31 | addscld 27393 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈ No
) |
227 | 226, 209 | subscld 27464 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) ∈ No
) |
228 | 227 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) ∈ No
) |
229 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈ No
) |
230 | | ssltright 27295 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → {𝐴}
<<s ( R ‘𝐴)) |
231 | 14, 230 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} <<s ( R ‘𝐴)) |
232 | 231, 124,
10 | ssltsepcd 27224 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 <s 𝑅) |
233 | 55 | uneq1i 4156 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(∅ ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) |
234 | | 0un 4389 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) |
235 | 233, 234 | eqtri 2760 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) |
236 | 134, 73 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
237 | 141, 187 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
238 | 144, 87 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
239 | 149, 191 | onun2i 6476 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On |
240 | | onunel 6459 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
241 | 238, 239,
95, 240 | mp3an 1461 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
242 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
243 | 144, 87, 95, 242 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
244 | | onunel 6459 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
245 | 149, 191,
95, 244 | mp3an 1461 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
246 | 243, 245 | anbi12i 627 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
247 | 241, 246 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
248 | 236, 237,
247 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
249 | | elun1 4173 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝐴) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑈)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
250 | 248, 249 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
251 | 235, 250 | eqeltrid 2837 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝐴) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑈))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
252 | 8, 45, 45, 14, 49, 5, 3, 251 | mulsproplem1 27501 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈))))) |
253 | 252 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 <s 𝑅 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)))) |
254 | 232, 253 | mpand 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 <s 𝑆 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)))) |
255 | 254 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈))) |
256 | 17, 19, 31, 209 | sltsubsubbd 27479 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
257 | 17, 19 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) ∈ No
) |
258 | 31, 209 | subscld 27464 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)) ∈ No
) |
259 | 257, 258,
13 | sltadd2d 27409 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
260 | 256, 259 | bitrd 278 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
261 | 260 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑈)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑈)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈))))) |
262 | 255, 261 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
263 | 13, 17, 19 | addsubsassd 27477 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)))) |
264 | 263 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)))) |
265 | 13, 31, 209 | addsubsassd 27477 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
266 | 265 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑅 ·s 𝑈)))) |
267 | 262, 264,
266 | 3brtr4d 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈))) |
268 | 218 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑅 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
269 | 225, 228,
229, 267, 268 | slttrd 27191 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |
270 | 269 | ex 413 |
. . 3
⊢ (𝜑 → (𝑈 <s 𝑆 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
271 | 180, 224,
270 | 3jaod 1428 |
. 2
⊢ (𝜑 → ((𝑆 <s 𝑈 ∨ 𝑆 = 𝑈 ∨ 𝑈 <s 𝑆) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) |
272 | 7, 271 | mpd 15 |
1
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |