MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem3 Structured version   Visualization version   GIF version

Theorem mulsproplem3 28044
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of 𝐴 itself and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem3.1 (𝜑𝐴 No )
mulsproplem3.2 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
Assertion
Ref Expression
mulsproplem3 (𝜑 → (𝐴 ·s 𝑌) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑎)

Proof of Theorem mulsproplem3
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 mulsproplem3.1 . . 3 (𝜑𝐴 No )
3 oldssno 27789 . . . 4 ( O ‘( bday 𝐵)) ⊆ No
4 mulsproplem3.2 . . . 4 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
53, 4sselid 3935 . . 3 (𝜑𝑌 No )
6 0sno 27758 . . . 4 0s No
76a1i 11 . . 3 (𝜑 → 0s No )
8 bday0s 27760 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
98, 8oveq12i 7365 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
10 0elon 6366 . . . . . . . . . . . 12 ∅ ∈ On
11 naddrid 8608 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1210, 11ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
139, 12eqtri 2752 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1413, 13uneq12i 4119 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
15 un0 4347 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1614, 15eqtri 2752 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1716, 16uneq12i 4119 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
1817, 15eqtri 2752 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
1918uneq2i 4118 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐴) +no ( bday 𝑌)) ∪ ∅)
20 un0 4347 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∪ ∅) = (( bday 𝐴) +no ( bday 𝑌))
2119, 20eqtri 2752 . . . 4 ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐴) +no ( bday 𝑌))
22 oldbdayim 27821 . . . . . . 7 (𝑌 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑌) ∈ ( bday 𝐵))
234, 22syl 17 . . . . . 6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝐵))
24 bdayelon 27704 . . . . . . 7 ( bday 𝑌) ∈ On
25 bdayelon 27704 . . . . . . 7 ( bday 𝐵) ∈ On
26 bdayelon 27704 . . . . . . 7 ( bday 𝐴) ∈ On
27 naddel2 8613 . . . . . . 7 ((( bday 𝑌) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑌) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 25, 26, 27mp3an 1463 . . . . . 6 (( bday 𝑌) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2923, 28sylib 218 . . . . 5 (𝜑 → (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 elun1 4135 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝐴) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3129, 30syl 17 . . . 4 (𝜑 → (( bday 𝐴) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3221, 31eqeltrid 2832 . . 3 (𝜑 → ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
331, 2, 5, 7, 7, 7, 7, 32mulsproplem1 28042 . 2 (𝜑 → ((𝐴 ·s 𝑌) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3433simpld 494 1 (𝜑 → (𝐴 ·s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3903  c0 4286   class class class wbr 5095  Oncon0 6311  cfv 6486  (class class class)co 7353   +no cnadd 8590   No csur 27567   <s cslt 27568   bday cbday 27569   0s c0s 27754   O cold 27771   -s csubs 27949   ·s cmuls 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776
This theorem is referenced by:  mulsproplem5  28046  mulsproplem6  28047  mulsproplem7  28048  mulsproplem8  28049  mulsproplem9  28050  mulsproplem14  28055
  Copyright terms: Public domain W3C validator