MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem3 Structured version   Visualization version   GIF version

Theorem mulsproplem3 28077
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of 𝐴 itself and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem3.1 (𝜑𝐴 No )
mulsproplem3.2 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
Assertion
Ref Expression
mulsproplem3 (𝜑 → (𝐴 ·s 𝑌) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑎)

Proof of Theorem mulsproplem3
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 mulsproplem3.1 . . 3 (𝜑𝐴 No )
3 oldssno 27822 . . . 4 ( O ‘( bday 𝐵)) ⊆ No
4 mulsproplem3.2 . . . 4 (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))
53, 4sselid 3928 . . 3 (𝜑𝑌 No )
6 0sno 27790 . . . 4 0s No
76a1i 11 . . 3 (𝜑 → 0s No )
8 bday0s 27792 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
98, 8oveq12i 7367 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
10 0elon 6369 . . . . . . . . . . . 12 ∅ ∈ On
11 naddrid 8607 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1210, 11ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
139, 12eqtri 2756 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1413, 13uneq12i 4115 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
15 un0 4343 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1614, 15eqtri 2756 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1716, 16uneq12i 4115 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
1817, 15eqtri 2756 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
1918uneq2i 4114 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐴) +no ( bday 𝑌)) ∪ ∅)
20 un0 4343 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∪ ∅) = (( bday 𝐴) +no ( bday 𝑌))
2119, 20eqtri 2756 . . . 4 ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐴) +no ( bday 𝑌))
22 oldbdayim 27854 . . . . . . 7 (𝑌 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑌) ∈ ( bday 𝐵))
234, 22syl 17 . . . . . 6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝐵))
24 bdayelon 27735 . . . . . . 7 ( bday 𝑌) ∈ On
25 bdayelon 27735 . . . . . . 7 ( bday 𝐵) ∈ On
26 bdayelon 27735 . . . . . . 7 ( bday 𝐴) ∈ On
27 naddel2 8612 . . . . . . 7 ((( bday 𝑌) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑌) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 25, 26, 27mp3an 1463 . . . . . 6 (( bday 𝑌) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2923, 28sylib 218 . . . . 5 (𝜑 → (( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 elun1 4131 . . . . 5 ((( bday 𝐴) +no ( bday 𝑌)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝐴) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3129, 30syl 17 . . . 4 (𝜑 → (( bday 𝐴) +no ( bday 𝑌)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3221, 31eqeltrid 2837 . . 3 (𝜑 → ((( bday 𝐴) +no ( bday 𝑌)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
331, 2, 5, 7, 7, 7, 7, 32mulsproplem1 28075 . 2 (𝜑 → ((𝐴 ·s 𝑌) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3433simpld 494 1 (𝜑 → (𝐴 ·s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cun 3896  c0 4282   class class class wbr 5095  Oncon0 6314  cfv 6489  (class class class)co 7355   +no cnadd 8589   No csur 27598   <s cslt 27599   bday cbday 27600   0s c0s 27786   O cold 27804   -s csubs 27982   ·s cmuls 28065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sslt 27741  df-scut 27743  df-0s 27788  df-made 27808  df-old 27809
This theorem is referenced by:  mulsproplem5  28079  mulsproplem6  28080  mulsproplem7  28081  mulsproplem8  28082  mulsproplem9  28083  mulsproplem14  28088
  Copyright terms: Public domain W3C validator