Proof of Theorem mulsproplem8
| Step | Hyp | Ref
| Expression |
| 1 | | rightssno 27800 |
. . . 4
⊢ ( R
‘𝐴) ⊆ No |
| 2 | | mulsproplem8.3 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) |
| 3 | 1, 2 | sselid 3952 |
. . 3
⊢ (𝜑 → 𝑅 ∈ No
) |
| 4 | | mulsproplem8.5 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ ( R ‘𝐴)) |
| 5 | 1, 4 | sselid 3952 |
. . 3
⊢ (𝜑 → 𝑉 ∈ No
) |
| 6 | | sltlin 27668 |
. . 3
⊢ ((𝑅 ∈
No ∧ 𝑉 ∈
No ) → (𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅)) |
| 7 | 3, 5, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅)) |
| 8 | | mulsproplem.1 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈ No
∀𝑏 ∈ No ∀𝑐 ∈ No
∀𝑑 ∈ No ∀𝑒 ∈ No
∀𝑓 ∈ No (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) |
| 9 | | rightssold 27798 |
. . . . . . . . . 10
⊢ ( R
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) |
| 10 | 9, 2 | sselid 3952 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ( O ‘(
bday ‘𝐴))) |
| 11 | | mulsproplem8.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ No
) |
| 12 | 8, 10, 11 | mulsproplem2 28027 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·s 𝐵) ∈ No
) |
| 13 | | mulsproplem8.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ No
) |
| 14 | | rightssold 27798 |
. . . . . . . . . 10
⊢ ( R
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) |
| 15 | | mulsproplem8.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) |
| 16 | 14, 15 | sselid 3952 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ( O ‘(
bday ‘𝐵))) |
| 17 | 8, 13, 16 | mulsproplem3 28028 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑆) ∈ No
) |
| 18 | 12, 17 | addscld 27894 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
| 19 | 8, 10, 16 | mulsproplem4 28029 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ·s 𝑆) ∈ No
) |
| 20 | 18, 19 | subscld 27974 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 22 | | leftssold 27797 |
. . . . . . . . . 10
⊢ ( L
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) |
| 23 | | mulsproplem8.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ ( L ‘𝐵)) |
| 24 | 22, 23 | sselid 3952 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ ( O ‘(
bday ‘𝐵))) |
| 25 | 8, 13, 24 | mulsproplem3 28028 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑊) ∈ No
) |
| 26 | 12, 25 | addscld 27894 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) ∈ No
) |
| 27 | 8, 10, 24 | mulsproplem4 28029 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ·s 𝑊) ∈ No
) |
| 28 | 26, 27 | subscld 27974 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) ∈ No
) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) ∈ No
) |
| 30 | 9, 4 | sselid 3952 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ ( O ‘(
bday ‘𝐴))) |
| 31 | 8, 30, 11 | mulsproplem2 28027 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ·s 𝐵) ∈ No
) |
| 32 | 31, 25 | addscld 27894 |
. . . . . . 7
⊢ (𝜑 → ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) ∈ No
) |
| 33 | 8, 30, 24 | mulsproplem4 28029 |
. . . . . . 7
⊢ (𝜑 → (𝑉 ·s 𝑊) ∈ No
) |
| 34 | 32, 33 | subscld 27974 |
. . . . . 6
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No
) |
| 35 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No
) |
| 36 | | ssltright 27790 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → {𝐴}
<<s ( R ‘𝐴)) |
| 37 | 13, 36 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} <<s ( R ‘𝐴)) |
| 38 | | snidg 4632 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → 𝐴 ∈
{𝐴}) |
| 39 | 13, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 40 | 37, 39, 2 | ssltsepcd 27713 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 <s 𝑅) |
| 41 | | lltropt 27791 |
. . . . . . . . . . 11
⊢ ( L
‘𝐵) <<s ( R
‘𝐵) |
| 42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵)) |
| 43 | 42, 23, 15 | ssltsepcd 27713 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 <s 𝑆) |
| 44 | | 0sno 27745 |
. . . . . . . . . . . 12
⊢
0s ∈ No |
| 45 | 44 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0s ∈ No ) |
| 46 | | leftssno 27799 |
. . . . . . . . . . . 12
⊢ ( L
‘𝐵) ⊆ No |
| 47 | 46, 23 | sselid 3952 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ No
) |
| 48 | | rightssno 27800 |
. . . . . . . . . . . 12
⊢ ( R
‘𝐵) ⊆ No |
| 49 | 48, 15 | sselid 3952 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ No
) |
| 50 | | bday0s 27747 |
. . . . . . . . . . . . . . . 16
⊢ ( bday ‘ 0s ) = ∅ |
| 51 | 50, 50 | oveq12i 7406 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no
∅) |
| 52 | | 0elon 6395 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ On |
| 53 | | naddrid 8658 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ On → (∅ +no ∅) = ∅) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (∅
+no ∅) = ∅ |
| 55 | 51, 54 | eqtri 2753 |
. . . . . . . . . . . . . 14
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) =
∅ |
| 56 | 55 | uneq1i 4135 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))))) =
(∅ ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))))) |
| 57 | | 0un 4367 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) |
| 58 | 56, 57 | eqtri 2753 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) |
| 59 | | oldbdayim 27807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑊) ∈
( bday ‘𝐵)) |
| 60 | 24, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑊)
∈ ( bday ‘𝐵)) |
| 61 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑊) ∈ On |
| 62 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐵) ∈ On |
| 63 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐴) ∈ On |
| 64 | | naddel2 8663 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑊) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑊)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 65 | 61, 62, 63, 64 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑊) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 66 | 60, 65 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 67 | | oldbdayim 27807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑅) ∈
( bday ‘𝐴)) |
| 68 | 10, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑅)
∈ ( bday ‘𝐴)) |
| 69 | | oldbdayim 27807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑆) ∈
( bday ‘𝐵)) |
| 70 | 16, 69 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑆)
∈ ( bday ‘𝐵)) |
| 71 | | naddel12 8675 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 72 | 63, 62, 71 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 73 | 68, 70, 72 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 74 | 66, 73 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 75 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑆) ∈ On |
| 76 | | naddel2 8663 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑆) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑆)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 77 | 75, 62, 63, 76 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑆) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 78 | 70, 77 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 79 | | naddel12 8675 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑅) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑊) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 80 | 63, 62, 79 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑊) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 81 | 68, 60, 80 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 82 | 78, 81 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 83 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑊)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
On) |
| 84 | 63, 61, 83 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
On |
| 85 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . . 18
⊢ ( bday ‘𝑅) ∈ On |
| 86 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On) |
| 87 | 85, 75, 86 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
On |
| 88 | 84, 87 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
| 89 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On) |
| 90 | 63, 75, 89 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
On |
| 91 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝑊)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
On) |
| 92 | 85, 61, 91 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
On |
| 93 | 90, 92 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
On |
| 94 | | naddcl 8652 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) |
| 95 | 63, 62, 94 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On |
| 96 | | onunel 6447 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 97 | 88, 93, 95, 96 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 98 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 99 | 84, 87, 95, 98 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 100 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 101 | 90, 92, 95, 100 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 102 | 99, 101 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 103 | 97, 102 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 104 | 74, 82, 103 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑊)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 105 | | elun1 4153 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑊)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑊)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 107 | 58, 106 | eqeltrid 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝐴) +no ( bday ‘𝑊)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑊))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 108 | 8, 45, 45, 13, 3, 47, 49, 107 | mulsproplem1 28026 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝐴 <s 𝑅 ∧ 𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊))))) |
| 109 | 108 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 <s 𝑅 ∧ 𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)))) |
| 110 | 40, 43, 109 | mp2and 699 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊))) |
| 111 | 17, 19, 25, 27 | sltsubsubbd 27994 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)) ↔ ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)))) |
| 112 | 17, 19 | subscld 27974 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 113 | 25, 27 | subscld 27974 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)) ∈ No
) |
| 114 | 112, 113,
12 | sltadd2d 27911 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊))))) |
| 115 | 111, 114 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊))))) |
| 116 | 110, 115 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)))) |
| 117 | 12, 17, 19 | addsubsassd 27992 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)))) |
| 118 | 12, 25, 27 | addsubsassd 27992 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)))) |
| 119 | 116, 117,
118 | 3brtr4d 5147 |
. . . . . 6
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊))) |
| 120 | 119 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊))) |
| 121 | | ssltleft 27789 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → ( L ‘𝐵) <<s {𝐵}) |
| 122 | 11, 121 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐵) <<s {𝐵}) |
| 123 | | snidg 4632 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → 𝐵 ∈
{𝐵}) |
| 124 | 11, 123 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
| 125 | 122, 23, 124 | ssltsepcd 27713 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 <s 𝐵) |
| 126 | 55 | uneq1i 4135 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(∅ ∪ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) |
| 127 | | 0un 4367 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) |
| 128 | 126, 127 | eqtri 2753 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) |
| 129 | | oldbdayim 27807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑉 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑉) ∈
( bday ‘𝐴)) |
| 130 | 30, 129 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑉)
∈ ( bday ‘𝐴)) |
| 131 | | bdayelon 27695 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑉) ∈ On |
| 132 | | naddel1 8662 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑉) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑉)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑉) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 133 | 131, 63, 62, 132 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑉) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 134 | 130, 133 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑉) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 135 | 81, 134 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑅) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑉) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 136 | | naddel1 8662 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑅)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 137 | 85, 63, 62, 136 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑅) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 138 | 68, 137 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑅) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 139 | | naddel12 8675 |
. . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑉) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑊) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 140 | 63, 62, 139 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑉) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑊) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 141 | 130, 60, 140 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑉) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 142 | 138, 141 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑅) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑉) +no ( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 143 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑉) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
On) |
| 144 | 131, 62, 143 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
On |
| 145 | 92, 144 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
On |
| 146 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑅) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On) |
| 147 | 85, 62, 146 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
On |
| 148 | | naddcl 8652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑉) ∈ On ∧ (
bday ‘𝑊)
∈ On) → (( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
On) |
| 149 | 131, 61, 148 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
On |
| 150 | 147, 149 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
On |
| 151 | | onunel 6447 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
On ∧ ((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 152 | 145, 150,
95, 151 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 153 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝑉) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 154 | 92, 144, 95, 153 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 155 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑉) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 156 | 147, 149,
95, 155 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 157 | 154, 156 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 158 | 152, 157 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 159 | 135, 142,
158 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑅) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑅) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 160 | | elun1 4153 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑅) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑅) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑅) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑅) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 162 | 128, 161 | eqeltrid 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑅) +no ( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑅) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 163 | 8, 45, 45, 3, 5, 47, 11, 162 | mulsproplem1 28026 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑅 <s 𝑉 ∧ 𝑊 <s 𝐵) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊))))) |
| 164 | 163 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑅 <s 𝑉 ∧ 𝑊 <s 𝐵) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)))) |
| 165 | 125, 164 | mpan2d 694 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 <s 𝑉 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)))) |
| 166 | 165 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊))) |
| 167 | 12, 27 | subscld 27974 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) ∈ No
) |
| 168 | 31, 33 | subscld 27974 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ∈ No
) |
| 169 | 167, 168,
25 | sltadd1d 27912 |
. . . . . . . 8
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊)))) |
| 170 | 169 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊)))) |
| 171 | 166, 170 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊))) |
| 172 | 12, 25, 27 | addsubsd 27993 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊))) |
| 173 | 172 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊))) |
| 174 | 31, 25, 33 | addsubsd 27993 |
. . . . . . 7
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊))) |
| 175 | 174 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊))) |
| 176 | 171, 173,
175 | 3brtr4d 5147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |
| 177 | 21, 29, 35, 120, 176 | slttrd 27678 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |
| 178 | 177 | ex 412 |
. . 3
⊢ (𝜑 → (𝑅 <s 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))) |
| 179 | 37, 39, 4 | ssltsepcd 27713 |
. . . . . . 7
⊢ (𝜑 → 𝐴 <s 𝑉) |
| 180 | 55 | uneq1i 4135 |
. . . . . . . . . . 11
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(∅ ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) |
| 181 | | 0un 4367 |
. . . . . . . . . . 11
⊢ (∅
∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) |
| 182 | 180, 181 | eqtri 2753 |
. . . . . . . . . 10
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))))) =
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) |
| 183 | | naddel12 8675 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑉) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 184 | 63, 62, 183 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝑉) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑆) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) |
| 185 | 130, 70, 184 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((
bday ‘𝑉) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 186 | 66, 185 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑉) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 187 | 78, 141 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((
bday ‘𝐴) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑉) +no ( bday ‘𝑊)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 188 | | naddcl 8652 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑉) ∈ On ∧ (
bday ‘𝑆)
∈ On) → (( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
On) |
| 189 | 131, 75, 188 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ (( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
On |
| 190 | 84, 189 | onun2i 6464 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
On |
| 191 | 90, 149 | onun2i 6464 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
On |
| 192 | | onunel 6447 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 193 | 190, 191,
95, 192 | mp3an 1463 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 194 | | onunel 6447 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝑉) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 195 | 84, 189, 95, 194 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 196 | | onunel 6447 |
. . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑉) +no ( bday
‘𝑊)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 197 | 90, 149, 95, 196 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 198 | 195, 197 | anbi12i 628 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 199 | 193, 198 | bitri 275 |
. . . . . . . . . . . 12
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑉) +no ( bday
‘𝑊)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 200 | 186, 187,
199 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 201 | | elun1 4153 |
. . . . . . . . . . 11
⊢
((((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝐴) +no ( bday
‘𝑊)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑆))) ∪
((( bday ‘𝐴) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑉) +no ( bday
‘𝑊)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 202 | 200, 201 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((((
bday ‘𝐴) +no
( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 203 | 182, 202 | eqeltrid 2833 |
. . . . . . . . 9
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝐴) +no ( bday ‘𝑊)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝐴) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑉) +no ( bday ‘𝑊))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 204 | 8, 45, 45, 13, 5, 47, 49, 203 | mulsproplem1 28026 |
. . . . . . . 8
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝐴 <s 𝑉 ∧ 𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊))))) |
| 205 | 204 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 <s 𝑉 ∧ 𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)))) |
| 206 | 179, 43, 205 | mp2and 699 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊))) |
| 207 | 8, 30, 16 | mulsproplem4 28029 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 ·s 𝑆) ∈ No
) |
| 208 | 17, 207, 25, 33 | sltsubsubbd 27994 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)) ↔ ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)))) |
| 209 | 17, 207 | subscld 27974 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) ∈ No
) |
| 210 | 25, 33 | subscld 27974 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)) ∈ No
) |
| 211 | 209, 210,
31 | sltadd2d 27911 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)) ↔ ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊))))) |
| 212 | 208, 211 | bitrd 279 |
. . . . . 6
⊢ (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)) ↔ ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊))))) |
| 213 | 206, 212 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)))) |
| 214 | 31, 17, 207 | addsubsassd 27992 |
. . . . 5
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)))) |
| 215 | 31, 25, 33 | addsubsassd 27992 |
. . . . 5
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)))) |
| 216 | 213, 214,
215 | 3brtr4d 5147 |
. . . 4
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |
| 217 | | oveq1 7401 |
. . . . . . 7
⊢ (𝑅 = 𝑉 → (𝑅 ·s 𝐵) = (𝑉 ·s 𝐵)) |
| 218 | 217 | oveq1d 7409 |
. . . . . 6
⊢ (𝑅 = 𝑉 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) = ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆))) |
| 219 | | oveq1 7401 |
. . . . . 6
⊢ (𝑅 = 𝑉 → (𝑅 ·s 𝑆) = (𝑉 ·s 𝑆)) |
| 220 | 218, 219 | oveq12d 7412 |
. . . . 5
⊢ (𝑅 = 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆))) |
| 221 | 220 | breq1d 5125 |
. . . 4
⊢ (𝑅 = 𝑉 → ((((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ↔ (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))) |
| 222 | 216, 221 | syl5ibrcom 247 |
. . 3
⊢ (𝜑 → (𝑅 = 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))) |
| 223 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 224 | 31, 17 | addscld 27894 |
. . . . . . 7
⊢ (𝜑 → ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No
) |
| 225 | 224, 207 | subscld 27974 |
. . . . . 6
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) ∈ No
) |
| 226 | 225 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) ∈ No
) |
| 227 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No
) |
| 228 | | ssltright 27790 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → {𝐵}
<<s ( R ‘𝐵)) |
| 229 | 11, 228 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐵} <<s ( R ‘𝐵)) |
| 230 | 229, 124,
15 | ssltsepcd 27713 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 <s 𝑆) |
| 231 | 55 | uneq1i 4135 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) |
| 232 | | 0un 4367 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 233 | 231, 232 | eqtri 2753 |
. . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) |
| 234 | 134, 73 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑉) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 235 | 185, 138 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑉) +no
( bday ‘𝑆)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑅) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) |
| 236 | 144, 87 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On |
| 237 | 189, 147 | onun2i 6464 |
. . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On |
| 238 | | onunel 6447 |
. . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
On ∧ ((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 239 | 236, 237,
95, 238 | mp3an 1463 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 240 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 241 | 144, 87, 95, 240 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 242 | | onunel 6447 |
. . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑉) +no ( bday
‘𝑆)) ∈ On
∧ (( bday ‘𝑅) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 243 | 189, 147,
95, 242 | mp3an 1463 |
. . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) |
| 244 | 241, 243 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 245 | 239, 244 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑅) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) |
| 246 | 234, 235,
245 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑉) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑉) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) |
| 247 | | elun1 4153 |
. . . . . . . . . . . . 13
⊢
((((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑉) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑅) +no ( bday
‘𝑆))) ∪
((( bday ‘𝑉) +no ( bday
‘𝑆)) ∪
(( bday ‘𝑅) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) |
| 248 | 246, 247 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑉) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑉) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 249 | 233, 248 | eqeltrid 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑉) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑅) +no ( bday ‘𝑆))) ∪ ((( bday
‘𝑉) +no ( bday ‘𝑆)) ∪ (( bday
‘𝑅) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) |
| 250 | 8, 45, 45, 5, 3, 11, 49, 249 | mulsproplem1 28026 |
. . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈ No
∧ ((𝑉 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))))) |
| 251 | 250 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑉 <s 𝑅 ∧ 𝐵 <s 𝑆) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))) |
| 252 | 230, 251 | mpan2d 694 |
. . . . . . . 8
⊢ (𝜑 → (𝑉 <s 𝑅 → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))) |
| 253 | 252 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))) |
| 254 | 207, 31, 19, 12 | sltsubsub2bd 27995 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)))) |
| 255 | 12, 19 | subscld 27974 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) ∈ No
) |
| 256 | 31, 207 | subscld 27974 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) ∈ No
) |
| 257 | 255, 256,
17 | sltadd1d 27912 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
| 258 | 254, 257 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
| 259 | 258 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))) |
| 260 | 253, 259 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 261 | 12, 17, 19 | addsubsd 27993 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 262 | 261 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 263 | 31, 17, 207 | addsubsd 27993 |
. . . . . . 7
⊢ (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 264 | 263 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))) |
| 265 | 260, 262,
264 | 3brtr4d 5147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆))) |
| 266 | 216 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |
| 267 | 223, 226,
227, 265, 266 | slttrd 27678 |
. . . 4
⊢ ((𝜑 ∧ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |
| 268 | 267 | ex 412 |
. . 3
⊢ (𝜑 → (𝑉 <s 𝑅 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))) |
| 269 | 178, 222,
268 | 3jaod 1431 |
. 2
⊢ (𝜑 → ((𝑅 <s 𝑉 ∨ 𝑅 = 𝑉 ∨ 𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))) |
| 270 | 7, 269 | mpd 15 |
1
⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) |