MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem8 Structured version   Visualization version   GIF version

Theorem mulsproplem8 28164
Description: Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem8.1 (𝜑𝐴 No )
mulsproplem8.2 (𝜑𝐵 No )
mulsproplem8.3 (𝜑𝑅 ∈ ( R ‘𝐴))
mulsproplem8.4 (𝜑𝑆 ∈ ( R ‘𝐵))
mulsproplem8.5 (𝜑𝑉 ∈ ( R ‘𝐴))
mulsproplem8.6 (𝜑𝑊 ∈ ( L ‘𝐵))
Assertion
Ref Expression
mulsproplem8 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑅,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑆,𝑏,𝑐,𝑑,𝑒,𝑓   𝑉,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑊,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑎)   𝑊(𝑎)

Proof of Theorem mulsproplem8
StepHypRef Expression
1 rightssno 27935 . . . 4 ( R ‘𝐴) ⊆ No
2 mulsproplem8.3 . . . 4 (𝜑𝑅 ∈ ( R ‘𝐴))
31, 2sselid 3993 . . 3 (𝜑𝑅 No )
4 mulsproplem8.5 . . . 4 (𝜑𝑉 ∈ ( R ‘𝐴))
51, 4sselid 3993 . . 3 (𝜑𝑉 No )
6 sltlin 27809 . . 3 ((𝑅 No 𝑉 No ) → (𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅))
73, 5, 6syl2anc 584 . 2 (𝜑 → (𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅))
8 mulsproplem.1 . . . . . . . . 9 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
9 rightssold 27933 . . . . . . . . . 10 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
109, 2sselid 3993 . . . . . . . . 9 (𝜑𝑅 ∈ ( O ‘( bday 𝐴)))
11 mulsproplem8.2 . . . . . . . . 9 (𝜑𝐵 No )
128, 10, 11mulsproplem2 28158 . . . . . . . 8 (𝜑 → (𝑅 ·s 𝐵) ∈ No )
13 mulsproplem8.1 . . . . . . . . 9 (𝜑𝐴 No )
14 rightssold 27933 . . . . . . . . . 10 ( R ‘𝐵) ⊆ ( O ‘( bday 𝐵))
15 mulsproplem8.4 . . . . . . . . . 10 (𝜑𝑆 ∈ ( R ‘𝐵))
1614, 15sselid 3993 . . . . . . . . 9 (𝜑𝑆 ∈ ( O ‘( bday 𝐵)))
178, 13, 16mulsproplem3 28159 . . . . . . . 8 (𝜑 → (𝐴 ·s 𝑆) ∈ No )
1812, 17addscld 28028 . . . . . . 7 (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No )
198, 10, 16mulsproplem4 28160 . . . . . . 7 (𝜑 → (𝑅 ·s 𝑆) ∈ No )
2018, 19subscld 28108 . . . . . 6 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No )
2120adantr 480 . . . . 5 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No )
22 leftssold 27932 . . . . . . . . . 10 ( L ‘𝐵) ⊆ ( O ‘( bday 𝐵))
23 mulsproplem8.6 . . . . . . . . . 10 (𝜑𝑊 ∈ ( L ‘𝐵))
2422, 23sselid 3993 . . . . . . . . 9 (𝜑𝑊 ∈ ( O ‘( bday 𝐵)))
258, 13, 24mulsproplem3 28159 . . . . . . . 8 (𝜑 → (𝐴 ·s 𝑊) ∈ No )
2612, 25addscld 28028 . . . . . . 7 (𝜑 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) ∈ No )
278, 10, 24mulsproplem4 28160 . . . . . . 7 (𝜑 → (𝑅 ·s 𝑊) ∈ No )
2826, 27subscld 28108 . . . . . 6 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) ∈ No )
2928adantr 480 . . . . 5 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) ∈ No )
309, 4sselid 3993 . . . . . . . . 9 (𝜑𝑉 ∈ ( O ‘( bday 𝐴)))
318, 30, 11mulsproplem2 28158 . . . . . . . 8 (𝜑 → (𝑉 ·s 𝐵) ∈ No )
3231, 25addscld 28028 . . . . . . 7 (𝜑 → ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) ∈ No )
338, 30, 24mulsproplem4 28160 . . . . . . 7 (𝜑 → (𝑉 ·s 𝑊) ∈ No )
3432, 33subscld 28108 . . . . . 6 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No )
3534adantr 480 . . . . 5 ((𝜑𝑅 <s 𝑉) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No )
36 ssltright 27925 . . . . . . . . . . 11 (𝐴 No → {𝐴} <<s ( R ‘𝐴))
3713, 36syl 17 . . . . . . . . . 10 (𝜑 → {𝐴} <<s ( R ‘𝐴))
38 snidg 4665 . . . . . . . . . . 11 (𝐴 No 𝐴 ∈ {𝐴})
3913, 38syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
4037, 39, 2ssltsepcd 27854 . . . . . . . . 9 (𝜑𝐴 <s 𝑅)
41 lltropt 27926 . . . . . . . . . . 11 ( L ‘𝐵) <<s ( R ‘𝐵)
4241a1i 11 . . . . . . . . . 10 (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵))
4342, 23, 15ssltsepcd 27854 . . . . . . . . 9 (𝜑𝑊 <s 𝑆)
44 0sno 27886 . . . . . . . . . . . 12 0s No
4544a1i 11 . . . . . . . . . . 11 (𝜑 → 0s No )
46 leftssno 27934 . . . . . . . . . . . 12 ( L ‘𝐵) ⊆ No
4746, 23sselid 3993 . . . . . . . . . . 11 (𝜑𝑊 No )
48 rightssno 27935 . . . . . . . . . . . 12 ( R ‘𝐵) ⊆ No
4948, 15sselid 3993 . . . . . . . . . . 11 (𝜑𝑆 No )
50 bday0s 27888 . . . . . . . . . . . . . . . 16 ( bday ‘ 0s ) = ∅
5150, 50oveq12i 7443 . . . . . . . . . . . . . . 15 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
52 0elon 6440 . . . . . . . . . . . . . . . 16 ∅ ∈ On
53 naddrid 8720 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +no ∅) = ∅)
5452, 53ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +no ∅) = ∅
5551, 54eqtri 2763 . . . . . . . . . . . . . 14 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
5655uneq1i 4174 . . . . . . . . . . . . 13 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))) = (∅ ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))))
57 0un 4402 . . . . . . . . . . . . 13 (∅ ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))) = (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))
5856, 57eqtri 2763 . . . . . . . . . . . 12 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))) = (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))
59 oldbdayim 27942 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑊) ∈ ( bday 𝐵))
6024, 59syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ( bday 𝑊) ∈ ( bday 𝐵))
61 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday 𝑊) ∈ On
62 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday 𝐵) ∈ On
63 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday 𝐴) ∈ On
64 naddel2 8725 . . . . . . . . . . . . . . . . 17 ((( bday 𝑊) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑊) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
6561, 62, 63, 64mp3an 1460 . . . . . . . . . . . . . . . 16 (( bday 𝑊) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
6660, 65sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
67 oldbdayim 27942 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑅) ∈ ( bday 𝐴))
6810, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ( bday 𝑅) ∈ ( bday 𝐴))
69 oldbdayim 27942 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ( O ‘( bday 𝐵)) → ( bday 𝑆) ∈ ( bday 𝐵))
7016, 69syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ( bday 𝑆) ∈ ( bday 𝐵))
71 naddel12 8737 . . . . . . . . . . . . . . . . 17 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑅) ∈ ( bday 𝐴) ∧ ( bday 𝑆) ∈ ( bday 𝐵)) → (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
7263, 62, 71mp2an 692 . . . . . . . . . . . . . . . 16 ((( bday 𝑅) ∈ ( bday 𝐴) ∧ ( bday 𝑆) ∈ ( bday 𝐵)) → (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
7368, 70, 72syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
7466, 73jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
75 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday 𝑆) ∈ On
76 naddel2 8725 . . . . . . . . . . . . . . . . 17 ((( bday 𝑆) ∈ On ∧ ( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝑆) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
7775, 62, 63, 76mp3an 1460 . . . . . . . . . . . . . . . 16 (( bday 𝑆) ∈ ( bday 𝐵) ↔ (( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
7870, 77sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
79 naddel12 8737 . . . . . . . . . . . . . . . . 17 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑅) ∈ ( bday 𝐴) ∧ ( bday 𝑊) ∈ ( bday 𝐵)) → (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
8063, 62, 79mp2an 692 . . . . . . . . . . . . . . . 16 ((( bday 𝑅) ∈ ( bday 𝐴) ∧ ( bday 𝑊) ∈ ( bday 𝐵)) → (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
8168, 60, 80syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
8278, 81jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
83 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝐴) ∈ On ∧ ( bday 𝑊) ∈ On) → (( bday 𝐴) +no ( bday 𝑊)) ∈ On)
8463, 61, 83mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝐴) +no ( bday 𝑊)) ∈ On
85 bdayelon 27836 . . . . . . . . . . . . . . . . . 18 ( bday 𝑅) ∈ On
86 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑅) ∈ On ∧ ( bday 𝑆) ∈ On) → (( bday 𝑅) +no ( bday 𝑆)) ∈ On)
8785, 75, 86mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑅) +no ( bday 𝑆)) ∈ On
8884, 87onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ On
89 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝐴) ∈ On ∧ ( bday 𝑆) ∈ On) → (( bday 𝐴) +no ( bday 𝑆)) ∈ On)
9063, 75, 89mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝐴) +no ( bday 𝑆)) ∈ On
91 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑅) ∈ On ∧ ( bday 𝑊) ∈ On) → (( bday 𝑅) +no ( bday 𝑊)) ∈ On)
9285, 61, 91mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑅) +no ( bday 𝑊)) ∈ On
9390, 92onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ On
94 naddcl 8714 . . . . . . . . . . . . . . . . 17 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝐴) +no ( bday 𝐵)) ∈ On)
9563, 62, 94mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝐴) +no ( bday 𝐵)) ∈ On
96 onunel 6491 . . . . . . . . . . . . . . . 16 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ On ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
9788, 93, 95, 96mp3an 1460 . . . . . . . . . . . . . . 15 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))))
98 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝐴) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
9984, 87, 95, 98mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
100 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝐴) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
10190, 92, 95, 100mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
10299, 101anbi12i 628 . . . . . . . . . . . . . . 15 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
10397, 102bitri 275 . . . . . . . . . . . . . 14 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
10474, 82, 103sylanbrc 583 . . . . . . . . . . . . 13 (𝜑 → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)))
105 elun1 4192 . . . . . . . . . . . . 13 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
106104, 105syl 17 . . . . . . . . . . . 12 (𝜑 → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
10758, 106eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝑊))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
1088, 45, 45, 13, 3, 47, 49, 107mulsproplem1 28157 . . . . . . . . . 10 (𝜑 → (( 0s ·s 0s ) ∈ No ∧ ((𝐴 <s 𝑅𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)))))
109108simprd 495 . . . . . . . . 9 (𝜑 → ((𝐴 <s 𝑅𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊))))
11040, 43, 109mp2and 699 . . . . . . . 8 (𝜑 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)))
11117, 19, 25, 27sltsubsubbd 28128 . . . . . . . . 9 (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)) ↔ ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊))))
11217, 19subscld 28108 . . . . . . . . . 10 (𝜑 → ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) ∈ No )
11325, 27subscld 28108 . . . . . . . . . 10 (𝜑 → ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)) ∈ No )
114112, 113, 12sltadd2d 28045 . . . . . . . . 9 (𝜑 → (((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)))))
115111, 114bitrd 279 . . . . . . . 8 (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝑊)) ↔ ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊)))))
116110, 115mpbid 232 . . . . . . 7 (𝜑 → ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))) <s ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊))))
11712, 17, 19addsubsassd 28126 . . . . . . 7 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑅 ·s 𝑆))))
11812, 25, 27addsubsassd 28126 . . . . . . 7 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = ((𝑅 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑅 ·s 𝑊))))
119116, 117, 1183brtr4d 5180 . . . . . 6 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)))
120119adantr 480 . . . . 5 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)))
121 ssltleft 27924 . . . . . . . . . . 11 (𝐵 No → ( L ‘𝐵) <<s {𝐵})
12211, 121syl 17 . . . . . . . . . 10 (𝜑 → ( L ‘𝐵) <<s {𝐵})
123 snidg 4665 . . . . . . . . . . 11 (𝐵 No 𝐵 ∈ {𝐵})
12411, 123syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵})
125122, 23, 124ssltsepcd 27854 . . . . . . . . 9 (𝜑𝑊 <s 𝐵)
12655uneq1i 4174 . . . . . . . . . . . . 13 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (∅ ∪ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))))
127 0un 4402 . . . . . . . . . . . . 13 (∅ ∪ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))
128126, 127eqtri 2763 . . . . . . . . . . . 12 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))
129 oldbdayim 27942 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑉) ∈ ( bday 𝐴))
13030, 129syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ( bday 𝑉) ∈ ( bday 𝐴))
131 bdayelon 27836 . . . . . . . . . . . . . . . . 17 ( bday 𝑉) ∈ On
132 naddel1 8724 . . . . . . . . . . . . . . . . 17 ((( bday 𝑉) ∈ On ∧ ( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑉) ∈ ( bday 𝐴) ↔ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
133131, 63, 62, 132mp3an 1460 . . . . . . . . . . . . . . . 16 (( bday 𝑉) ∈ ( bday 𝐴) ↔ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
134130, 133sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
13581, 134jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
136 naddel1 8724 . . . . . . . . . . . . . . . . 17 ((( bday 𝑅) ∈ On ∧ ( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑅) ∈ ( bday 𝐴) ↔ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
13785, 63, 62, 136mp3an 1460 . . . . . . . . . . . . . . . 16 (( bday 𝑅) ∈ ( bday 𝐴) ↔ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
13868, 137sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
139 naddel12 8737 . . . . . . . . . . . . . . . . 17 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑉) ∈ ( bday 𝐴) ∧ ( bday 𝑊) ∈ ( bday 𝐵)) → (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
14063, 62, 139mp2an 692 . . . . . . . . . . . . . . . 16 ((( bday 𝑉) ∈ ( bday 𝐴) ∧ ( bday 𝑊) ∈ ( bday 𝐵)) → (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
141130, 60, 140syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
142138, 141jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
143 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑉) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑉) +no ( bday 𝐵)) ∈ On)
144131, 62, 143mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑉) +no ( bday 𝐵)) ∈ On
14592, 144onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ On
146 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑅) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑅) +no ( bday 𝐵)) ∈ On)
14785, 62, 146mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑅) +no ( bday 𝐵)) ∈ On
148 naddcl 8714 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑉) ∈ On ∧ ( bday 𝑊) ∈ On) → (( bday 𝑉) +no ( bday 𝑊)) ∈ On)
149131, 61, 148mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑉) +no ( bday 𝑊)) ∈ On
150147, 149onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ On
151 onunel 6491 . . . . . . . . . . . . . . . 16 ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ On ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
152145, 150, 95, 151mp3an 1460 . . . . . . . . . . . . . . 15 ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))))
153 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝑅) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
15492, 144, 95, 153mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
155 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝑅) +no ( bday 𝐵)) ∈ On ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
156147, 149, 95, 155mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
157154, 156anbi12i 628 . . . . . . . . . . . . . . 15 ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))) ↔ (((( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
158152, 157bitri 275 . . . . . . . . . . . . . 14 ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑅) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
159135, 142, 158sylanbrc 583 . . . . . . . . . . . . 13 (𝜑 → (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)))
160 elun1 4192 . . . . . . . . . . . . 13 ((((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
161159, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
162128, 161eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑅) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝐵))) ∪ ((( bday 𝑅) +no ( bday 𝐵)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
1638, 45, 45, 3, 5, 47, 11, 162mulsproplem1 28157 . . . . . . . . . 10 (𝜑 → (( 0s ·s 0s ) ∈ No ∧ ((𝑅 <s 𝑉𝑊 <s 𝐵) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)))))
164163simprd 495 . . . . . . . . 9 (𝜑 → ((𝑅 <s 𝑉𝑊 <s 𝐵) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊))))
165125, 164mpan2d 694 . . . . . . . 8 (𝜑 → (𝑅 <s 𝑉 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊))))
166165imp 406 . . . . . . 7 ((𝜑𝑅 <s 𝑉) → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)))
16712, 27subscld 28108 . . . . . . . . 9 (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) ∈ No )
16831, 33subscld 28108 . . . . . . . . 9 (𝜑 → ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ∈ No )
169167, 168, 25sltadd1d 28046 . . . . . . . 8 (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊))))
170169adantr 480 . . . . . . 7 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊))))
171166, 170mpbid 232 . . . . . 6 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊)))
17212, 25, 27addsubsd 28127 . . . . . . 7 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)))
173172adantr 480 . . . . . 6 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑊)) +s (𝐴 ·s 𝑊)))
17431, 25, 33addsubsd 28127 . . . . . . 7 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊)))
175174adantr 480 . . . . . 6 ((𝜑𝑅 <s 𝑉) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑊)) +s (𝐴 ·s 𝑊)))
176171, 173, 1753brtr4d 5180 . . . . 5 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑅 ·s 𝑊)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
17721, 29, 35, 120, 176slttrd 27819 . . . 4 ((𝜑𝑅 <s 𝑉) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
178177ex 412 . . 3 (𝜑 → (𝑅 <s 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))))
17937, 39, 4ssltsepcd 27854 . . . . . . 7 (𝜑𝐴 <s 𝑉)
18055uneq1i 4174 . . . . . . . . . . 11 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (∅ ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))))
181 0un 4402 . . . . . . . . . . 11 (∅ ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))
182180, 181eqtri 2763 . . . . . . . . . 10 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) = (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))
183 naddel12 8737 . . . . . . . . . . . . . . 15 ((( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → ((( bday 𝑉) ∈ ( bday 𝐴) ∧ ( bday 𝑆) ∈ ( bday 𝐵)) → (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
18463, 62, 183mp2an 692 . . . . . . . . . . . . . 14 ((( bday 𝑉) ∈ ( bday 𝐴) ∧ ( bday 𝑆) ∈ ( bday 𝐵)) → (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
185130, 70, 184syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
18666, 185jca 511 . . . . . . . . . . . 12 (𝜑 → ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
18778, 141jca 511 . . . . . . . . . . . 12 (𝜑 → ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
188 naddcl 8714 . . . . . . . . . . . . . . . 16 ((( bday 𝑉) ∈ On ∧ ( bday 𝑆) ∈ On) → (( bday 𝑉) +no ( bday 𝑆)) ∈ On)
189131, 75, 188mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑉) +no ( bday 𝑆)) ∈ On
19084, 189onun2i 6508 . . . . . . . . . . . . . 14 ((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ On
19190, 149onun2i 6508 . . . . . . . . . . . . . 14 ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ On
192 onunel 6491 . . . . . . . . . . . . . 14 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ On ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
193190, 191, 95, 192mp3an 1460 . . . . . . . . . . . . 13 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))))
194 onunel 6491 . . . . . . . . . . . . . . 15 (((( bday 𝐴) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
19584, 189, 95, 194mp3an 1460 . . . . . . . . . . . . . 14 (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
196 onunel 6491 . . . . . . . . . . . . . . 15 (((( bday 𝐴) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
19790, 149, 95, 196mp3an 1460 . . . . . . . . . . . . . 14 (((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
198195, 197anbi12i 628 . . . . . . . . . . . . 13 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))) ∈ (( bday 𝐴) +no ( bday 𝐵))) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
199193, 198bitri 275 . . . . . . . . . . . 12 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝐴) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝐴) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑉) +no ( bday 𝑊)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
200186, 187, 199sylanbrc 583 . . . . . . . . . . 11 (𝜑 → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)))
201 elun1 4192 . . . . . . . . . . 11 ((((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
202200, 201syl 17 . . . . . . . . . 10 (𝜑 → (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
203182, 202eqeltrid 2843 . . . . . . . . 9 (𝜑 → ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝐴) +no ( bday 𝑊)) ∪ (( bday 𝑉) +no ( bday 𝑆))) ∪ ((( bday 𝐴) +no ( bday 𝑆)) ∪ (( bday 𝑉) +no ( bday 𝑊))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
2048, 45, 45, 13, 5, 47, 49, 203mulsproplem1 28157 . . . . . . . 8 (𝜑 → (( 0s ·s 0s ) ∈ No ∧ ((𝐴 <s 𝑉𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)))))
205204simprd 495 . . . . . . 7 (𝜑 → ((𝐴 <s 𝑉𝑊 <s 𝑆) → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊))))
206179, 43, 205mp2and 699 . . . . . 6 (𝜑 → ((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)))
2078, 30, 16mulsproplem4 28160 . . . . . . . 8 (𝜑 → (𝑉 ·s 𝑆) ∈ No )
20817, 207, 25, 33sltsubsubbd 28128 . . . . . . 7 (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)) ↔ ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊))))
20917, 207subscld 28108 . . . . . . . 8 (𝜑 → ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) ∈ No )
21025, 33subscld 28108 . . . . . . . 8 (𝜑 → ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)) ∈ No )
211209, 210, 31sltadd2d 28045 . . . . . . 7 (𝜑 → (((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆)) <s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)) ↔ ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)))))
212208, 211bitrd 279 . . . . . 6 (𝜑 → (((𝐴 ·s 𝑆) -s (𝐴 ·s 𝑊)) <s ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝑊)) ↔ ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊)))))
213206, 212mpbid 232 . . . . 5 (𝜑 → ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))) <s ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊))))
21431, 17, 207addsubsassd 28126 . . . . 5 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑆) -s (𝑉 ·s 𝑆))))
21531, 25, 33addsubsassd 28126 . . . . 5 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) = ((𝑉 ·s 𝐵) +s ((𝐴 ·s 𝑊) -s (𝑉 ·s 𝑊))))
216213, 214, 2153brtr4d 5180 . . . 4 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
217 oveq1 7438 . . . . . . 7 (𝑅 = 𝑉 → (𝑅 ·s 𝐵) = (𝑉 ·s 𝐵))
218217oveq1d 7446 . . . . . 6 (𝑅 = 𝑉 → ((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) = ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)))
219 oveq1 7438 . . . . . 6 (𝑅 = 𝑉 → (𝑅 ·s 𝑆) = (𝑉 ·s 𝑆))
220218, 219oveq12d 7449 . . . . 5 (𝑅 = 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)))
221220breq1d 5158 . . . 4 (𝑅 = 𝑉 → ((((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ↔ (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))))
222216, 221syl5ibrcom 247 . . 3 (𝜑 → (𝑅 = 𝑉 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))))
22320adantr 480 . . . . 5 ((𝜑𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) ∈ No )
22431, 17addscld 28028 . . . . . . 7 (𝜑 → ((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) ∈ No )
225224, 207subscld 28108 . . . . . 6 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) ∈ No )
226225adantr 480 . . . . 5 ((𝜑𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) ∈ No )
22734adantr 480 . . . . 5 ((𝜑𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)) ∈ No )
228 ssltright 27925 . . . . . . . . . . 11 (𝐵 No → {𝐵} <<s ( R ‘𝐵))
22911, 228syl 17 . . . . . . . . . 10 (𝜑 → {𝐵} <<s ( R ‘𝐵))
230229, 124, 15ssltsepcd 27854 . . . . . . . . 9 (𝜑𝐵 <s 𝑆)
23155uneq1i 4174 . . . . . . . . . . . . 13 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))) = (∅ ∪ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))))
232 0un 4402 . . . . . . . . . . . . 13 (∅ ∪ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))) = (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))
233231, 232eqtri 2763 . . . . . . . . . . . 12 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))) = (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))
234134, 73jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
235185, 138jca 511 . . . . . . . . . . . . . 14 (𝜑 → ((( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
236144, 87onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ On
237189, 147onun2i 6508 . . . . . . . . . . . . . . . 16 ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ On
238 onunel 6491 . . . . . . . . . . . . . . . 16 ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ On ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
239236, 237, 95, 238mp3an 1460 . . . . . . . . . . . . . . 15 ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵))))
240 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝑉) +no ( bday 𝐵)) ∈ On ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
241144, 87, 95, 240mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
242 onunel 6491 . . . . . . . . . . . . . . . . 17 (((( bday 𝑉) +no ( bday 𝑆)) ∈ On ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ On ∧ (( bday 𝐴) +no ( bday 𝐵)) ∈ On) → (((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
243189, 147, 95, 242mp3an 1460 . . . . . . . . . . . . . . . 16 (((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ ((( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
244241, 243anbi12i 628 . . . . . . . . . . . . . . 15 ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))) ∈ (( bday 𝐴) +no ( bday 𝐵))) ↔ (((( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
245239, 244bitri 275 . . . . . . . . . . . . . 14 ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) ↔ (((( bday 𝑉) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵))) ∧ ((( bday 𝑉) +no ( bday 𝑆)) ∈ (( bday 𝐴) +no ( bday 𝐵)) ∧ (( bday 𝑅) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))))
246234, 235, 245sylanbrc 583 . . . . . . . . . . . . 13 (𝜑 → (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ (( bday 𝐴) +no ( bday 𝐵)))
247 elun1 4192 . . . . . . . . . . . . 13 ((((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
248246, 247syl 17 . . . . . . . . . . . 12 (𝜑 → (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵)))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
249233, 248eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday 𝑉) +no ( bday 𝐵)) ∪ (( bday 𝑅) +no ( bday 𝑆))) ∪ ((( bday 𝑉) +no ( bday 𝑆)) ∪ (( bday 𝑅) +no ( bday 𝐵))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
2508, 45, 45, 5, 3, 11, 49, 249mulsproplem1 28157 . . . . . . . . . 10 (𝜑 → (( 0s ·s 0s ) ∈ No ∧ ((𝑉 <s 𝑅𝐵 <s 𝑆) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))))
251250simprd 495 . . . . . . . . 9 (𝜑 → ((𝑉 <s 𝑅𝐵 <s 𝑆) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))))
252230, 251mpan2d 694 . . . . . . . 8 (𝜑 → (𝑉 <s 𝑅 → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵))))
253252imp 406 . . . . . . 7 ((𝜑𝑉 <s 𝑅) → ((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)))
254207, 31, 19, 12sltsubsub2bd 28129 . . . . . . . . 9 (𝜑 → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆))))
25512, 19subscld 28108 . . . . . . . . . 10 (𝜑 → ((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) ∈ No )
25631, 207subscld 28108 . . . . . . . . . 10 (𝜑 → ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) ∈ No )
257255, 256, 17sltadd1d 28046 . . . . . . . . 9 (𝜑 → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) <s ((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))))
258254, 257bitrd 279 . . . . . . . 8 (𝜑 → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))))
259258adantr 480 . . . . . . 7 ((𝜑𝑉 <s 𝑅) → (((𝑉 ·s 𝑆) -s (𝑉 ·s 𝐵)) <s ((𝑅 ·s 𝑆) -s (𝑅 ·s 𝐵)) ↔ (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆))))
260253, 259mpbid 232 . . . . . 6 ((𝜑𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)) <s (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))
26112, 17, 19addsubsd 28127 . . . . . . 7 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)))
262261adantr 480 . . . . . 6 ((𝜑𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) = (((𝑅 ·s 𝐵) -s (𝑅 ·s 𝑆)) +s (𝐴 ·s 𝑆)))
26331, 17, 207addsubsd 28127 . . . . . . 7 (𝜑 → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))
264263adantr 480 . . . . . 6 ((𝜑𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) = (((𝑉 ·s 𝐵) -s (𝑉 ·s 𝑆)) +s (𝐴 ·s 𝑆)))
265260, 262, 2643brtr4d 5180 . . . . 5 ((𝜑𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)))
266216adantr 480 . . . . 5 ((𝜑𝑉 <s 𝑅) → (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑉 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
267223, 226, 227, 265, 266slttrd 27819 . . . 4 ((𝜑𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
268267ex 412 . . 3 (𝜑 → (𝑉 <s 𝑅 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))))
269178, 222, 2683jaod 1428 . 2 (𝜑 → ((𝑅 <s 𝑉𝑅 = 𝑉𝑉 <s 𝑅) → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))))
2707, 269mpd 15 1 (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1537  wcel 2106  wral 3059  cun 3961  c0 4339  {csn 4631   class class class wbr 5148  Oncon0 6386  cfv 6563  (class class class)co 7431   +no cnadd 8702   No csur 27699   <s cslt 27700   bday cbday 27701   <<s csslt 27840   0s c0s 27882   O cold 27897   L cleft 27899   R cright 27900   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069
This theorem is referenced by:  mulsproplem9  28165
  Copyright terms: Public domain W3C validator