MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem2 Structured version   Visualization version   GIF version

Theorem mulsproplem2 27933
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of ๐ด and ๐ต itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
mulsproplem2.1 (๐œ‘ โ†’ ๐‘‹ โˆˆ ( O โ€˜( bday โ€˜๐ด)))
mulsproplem2.2 (๐œ‘ โ†’ ๐ต โˆˆ No )
Assertion
Ref Expression
mulsproplem2 (๐œ‘ โ†’ (๐‘‹ ยทs ๐ต) โˆˆ No )
Distinct variable groups:   ๐ด,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ต,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ถ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ท,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐ธ,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐น,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“   ๐‘‹,๐‘Ž,๐‘,๐‘,๐‘‘,๐‘’,๐‘“
Allowed substitution hints:   ๐œ‘(๐‘’,๐‘“,๐‘Ž,๐‘,๐‘,๐‘‘)

Proof of Theorem mulsproplem2
StepHypRef Expression
1 mulsproplem.1 . . 3 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘ โˆˆ No โˆ€๐‘‘ โˆˆ No โˆ€๐‘’ โˆˆ No โˆ€๐‘“ โˆˆ No (((( bday โ€˜๐‘Ž) +no ( bday โ€˜๐‘)) โˆช (((( bday โ€˜๐‘) +no ( bday โ€˜๐‘’)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘“))) โˆช ((( bday โ€˜๐‘) +no ( bday โ€˜๐‘“)) โˆช (( bday โ€˜๐‘‘) +no ( bday โ€˜๐‘’))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))) โ†’ ((๐‘Ž ยทs ๐‘) โˆˆ No โˆง ((๐‘ <s ๐‘‘ โˆง ๐‘’ <s ๐‘“) โ†’ ((๐‘ ยทs ๐‘“) -s (๐‘ ยทs ๐‘’)) <s ((๐‘‘ ยทs ๐‘“) -s (๐‘‘ ยทs ๐‘’))))))
2 oldssno 27704 . . . 4 ( O โ€˜( bday โ€˜๐ด)) โІ No
3 mulsproplem2.1 . . . 4 (๐œ‘ โ†’ ๐‘‹ โˆˆ ( O โ€˜( bday โ€˜๐ด)))
42, 3sselid 3972 . . 3 (๐œ‘ โ†’ ๐‘‹ โˆˆ No )
5 mulsproplem2.2 . . 3 (๐œ‘ โ†’ ๐ต โˆˆ No )
6 0sno 27675 . . . 4 0s โˆˆ No
76a1i 11 . . 3 (๐œ‘ โ†’ 0s โˆˆ No )
8 bday0s 27677 . . . . . . . . . . . 12 ( bday โ€˜ 0s ) = โˆ…
98, 8oveq12i 7413 . . . . . . . . . . 11 (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) = (โˆ… +no โˆ…)
10 0elon 6408 . . . . . . . . . . . 12 โˆ… โˆˆ On
11 naddrid 8678 . . . . . . . . . . . 12 (โˆ… โˆˆ On โ†’ (โˆ… +no โˆ…) = โˆ…)
1210, 11ax-mp 5 . . . . . . . . . . 11 (โˆ… +no โˆ…) = โˆ…
139, 12eqtri 2752 . . . . . . . . . 10 (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) = โˆ…
1413, 13uneq12i 4153 . . . . . . . . 9 ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) = (โˆ… โˆช โˆ…)
15 un0 4382 . . . . . . . . 9 (โˆ… โˆช โˆ…) = โˆ…
1614, 15eqtri 2752 . . . . . . . 8 ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) = โˆ…
1716, 16uneq12i 4153 . . . . . . 7 (((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) โˆช ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )))) = (โˆ… โˆช โˆ…)
1817, 15eqtri 2752 . . . . . 6 (((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) โˆช ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )))) = โˆ…
1918uneq2i 4152 . . . . 5 ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) โˆช ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))))) = ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆช โˆ…)
20 un0 4382 . . . . 5 ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆช โˆ…) = (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต))
2119, 20eqtri 2752 . . . 4 ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) โˆช ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))))) = (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต))
22 oldbdayim 27731 . . . . . . 7 (๐‘‹ โˆˆ ( O โ€˜( bday โ€˜๐ด)) โ†’ ( bday โ€˜๐‘‹) โˆˆ ( bday โ€˜๐ด))
233, 22syl 17 . . . . . 6 (๐œ‘ โ†’ ( bday โ€˜๐‘‹) โˆˆ ( bday โ€˜๐ด))
24 bdayelon 27625 . . . . . . 7 ( bday โ€˜๐‘‹) โˆˆ On
25 bdayelon 27625 . . . . . . 7 ( bday โ€˜๐ด) โˆˆ On
26 bdayelon 27625 . . . . . . 7 ( bday โ€˜๐ต) โˆˆ On
27 naddel1 8682 . . . . . . 7 ((( bday โ€˜๐‘‹) โˆˆ On โˆง ( bday โ€˜๐ด) โˆˆ On โˆง ( bday โ€˜๐ต) โˆˆ On) โ†’ (( bday โ€˜๐‘‹) โˆˆ ( bday โ€˜๐ด) โ†” (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ (( bday โ€˜๐ด) +no ( bday โ€˜๐ต))))
2824, 25, 26, 27mp3an 1457 . . . . . 6 (( bday โ€˜๐‘‹) โˆˆ ( bday โ€˜๐ด) โ†” (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ (( bday โ€˜๐ด) +no ( bday โ€˜๐ต)))
2923, 28sylib 217 . . . . 5 (๐œ‘ โ†’ (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ (( bday โ€˜๐ด) +no ( bday โ€˜๐ต)))
30 elun1 4168 . . . . 5 ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ (( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โ†’ (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))))
3129, 30syl 17 . . . 4 (๐œ‘ โ†’ (( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))))
3221, 31eqeltrid 2829 . . 3 (๐œ‘ โ†’ ((( bday โ€˜๐‘‹) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))) โˆช ((( bday โ€˜ 0s ) +no ( bday โ€˜ 0s )) โˆช (( bday โ€˜ 0s ) +no ( bday โ€˜ 0s ))))) โˆˆ ((( bday โ€˜๐ด) +no ( bday โ€˜๐ต)) โˆช (((( bday โ€˜๐ถ) +no ( bday โ€˜๐ธ)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐น))) โˆช ((( bday โ€˜๐ถ) +no ( bday โ€˜๐น)) โˆช (( bday โ€˜๐ท) +no ( bday โ€˜๐ธ))))))
331, 4, 5, 7, 7, 7, 7, 32mulsproplem1 27932 . 2 (๐œ‘ โ†’ ((๐‘‹ ยทs ๐ต) โˆˆ No โˆง (( 0s <s 0s โˆง 0s <s 0s ) โ†’ (( 0s ยทs 0s ) -s ( 0s ยทs 0s )) <s (( 0s ยทs 0s ) -s ( 0s ยทs 0s )))))
3433simpld 494 1 (๐œ‘ โ†’ (๐‘‹ ยทs ๐ต) โˆˆ No )
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3053   โˆช cun 3938  โˆ…c0 4314   class class class wbr 5138  Oncon0 6354  โ€˜cfv 6533  (class class class)co 7401   +no cnadd 8660   No csur 27489   <s cslt 27490   bday cbday 27491   0s c0s 27671   O cold 27686   -s csubs 27849   ยทs cmuls 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-nadd 8661  df-no 27492  df-slt 27493  df-bday 27494  df-sslt 27630  df-scut 27632  df-0s 27673  df-made 27690  df-old 27691
This theorem is referenced by:  mulsproplem5  27936  mulsproplem6  27937  mulsproplem7  27938  mulsproplem8  27939  mulsproplem9  27940  mulsproplem13  27944
  Copyright terms: Public domain W3C validator