MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem2 Structured version   Visualization version   GIF version

Theorem mulsproplem2 28161
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and 𝐵 itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem2.1 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
mulsproplem2.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulsproplem2 (𝜑 → (𝑋 ·s 𝐵) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulsproplem2
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 oldssno 27918 . . . 4 ( O ‘( bday 𝐴)) ⊆ No
3 mulsproplem2.1 . . . 4 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
42, 3sselid 4006 . . 3 (𝜑𝑋 No )
5 mulsproplem2.2 . . 3 (𝜑𝐵 No )
6 0sno 27889 . . . 4 0s No
76a1i 11 . . 3 (𝜑 → 0s No )
8 bday0s 27891 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
98, 8oveq12i 7460 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
10 0elon 6449 . . . . . . . . . . . 12 ∅ ∈ On
11 naddrid 8739 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1210, 11ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
139, 12eqtri 2768 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1413, 13uneq12i 4189 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
15 un0 4417 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1614, 15eqtri 2768 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1716, 16uneq12i 4189 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
1817, 15eqtri 2768 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
1918uneq2i 4188 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝑋) +no ( bday 𝐵)) ∪ ∅)
20 un0 4417 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∪ ∅) = (( bday 𝑋) +no ( bday 𝐵))
2119, 20eqtri 2768 . . . 4 ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝑋) +no ( bday 𝐵))
22 oldbdayim 27945 . . . . . . 7 (𝑋 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑋) ∈ ( bday 𝐴))
233, 22syl 17 . . . . . 6 (𝜑 → ( bday 𝑋) ∈ ( bday 𝐴))
24 bdayelon 27839 . . . . . . 7 ( bday 𝑋) ∈ On
25 bdayelon 27839 . . . . . . 7 ( bday 𝐴) ∈ On
26 bdayelon 27839 . . . . . . 7 ( bday 𝐵) ∈ On
27 naddel1 8743 . . . . . . 7 ((( bday 𝑋) ∈ On ∧ ( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑋) ∈ ( bday 𝐴) ↔ (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 25, 26, 27mp3an 1461 . . . . . 6 (( bday 𝑋) ∈ ( bday 𝐴) ↔ (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2923, 28sylib 218 . . . . 5 (𝜑 → (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 elun1 4205 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝐵)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3129, 30syl 17 . . . 4 (𝜑 → (( bday 𝑋) +no ( bday 𝐵)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3221, 31eqeltrid 2848 . . 3 (𝜑 → ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
331, 4, 5, 7, 7, 7, 7, 32mulsproplem1 28160 . 2 (𝜑 → ((𝑋 ·s 𝐵) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3433simpld 494 1 (𝜑 → (𝑋 ·s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cun 3974  c0 4352   class class class wbr 5166  Oncon0 6395  cfv 6573  (class class class)co 7448   +no cnadd 8721   No csur 27702   <s cslt 27703   bday cbday 27704   0s c0s 27885   O cold 27900   -s csubs 28070   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905
This theorem is referenced by:  mulsproplem5  28164  mulsproplem6  28165  mulsproplem7  28166  mulsproplem8  28167  mulsproplem9  28168  mulsproplem13  28172
  Copyright terms: Public domain W3C validator