MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem2 Structured version   Visualization version   GIF version

Theorem mulsproplem2 27996
Description: Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and 𝐵 itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem2.1 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
mulsproplem2.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulsproplem2 (𝜑 → (𝑋 ·s 𝐵) ∈ No )
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulsproplem2
StepHypRef Expression
1 mulsproplem.1 . . 3 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
2 oldssno 27745 . . . 4 ( O ‘( bday 𝐴)) ⊆ No
3 mulsproplem2.1 . . . 4 (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))
42, 3sselid 3941 . . 3 (𝜑𝑋 No )
5 mulsproplem2.2 . . 3 (𝜑𝐵 No )
6 0sno 27714 . . . 4 0s No
76a1i 11 . . 3 (𝜑 → 0s No )
8 bday0s 27716 . . . . . . . . . . . 12 ( bday ‘ 0s ) = ∅
98, 8oveq12i 7381 . . . . . . . . . . 11 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
10 0elon 6375 . . . . . . . . . . . 12 ∅ ∈ On
11 naddrid 8624 . . . . . . . . . . . 12 (∅ ∈ On → (∅ +no ∅) = ∅)
1210, 11ax-mp 5 . . . . . . . . . . 11 (∅ +no ∅) = ∅
139, 12eqtri 2752 . . . . . . . . . 10 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
1413, 13uneq12i 4125 . . . . . . . . 9 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (∅ ∪ ∅)
15 un0 4353 . . . . . . . . 9 (∅ ∪ ∅) = ∅
1614, 15eqtri 2752 . . . . . . . 8 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = ∅
1716, 16uneq12i 4125 . . . . . . 7 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = (∅ ∪ ∅)
1817, 15eqtri 2752 . . . . . 6 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
1918uneq2i 4124 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝑋) +no ( bday 𝐵)) ∪ ∅)
20 un0 4353 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∪ ∅) = (( bday 𝑋) +no ( bday 𝐵))
2119, 20eqtri 2752 . . . 4 ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝑋) +no ( bday 𝐵))
22 oldbdayim 27776 . . . . . . 7 (𝑋 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑋) ∈ ( bday 𝐴))
233, 22syl 17 . . . . . 6 (𝜑 → ( bday 𝑋) ∈ ( bday 𝐴))
24 bdayelon 27664 . . . . . . 7 ( bday 𝑋) ∈ On
25 bdayelon 27664 . . . . . . 7 ( bday 𝐴) ∈ On
26 bdayelon 27664 . . . . . . 7 ( bday 𝐵) ∈ On
27 naddel1 8628 . . . . . . 7 ((( bday 𝑋) ∈ On ∧ ( bday 𝐴) ∈ On ∧ ( bday 𝐵) ∈ On) → (( bday 𝑋) ∈ ( bday 𝐴) ↔ (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵))))
2824, 25, 26, 27mp3an 1463 . . . . . 6 (( bday 𝑋) ∈ ( bday 𝐴) ↔ (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
2923, 28sylib 218 . . . . 5 (𝜑 → (( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)))
30 elun1 4141 . . . . 5 ((( bday 𝑋) +no ( bday 𝐵)) ∈ (( bday 𝐴) +no ( bday 𝐵)) → (( bday 𝑋) +no ( bday 𝐵)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3129, 30syl 17 . . . 4 (𝜑 → (( bday 𝑋) +no ( bday 𝐵)) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
3221, 31eqeltrid 2832 . . 3 (𝜑 → ((( bday 𝑋) +no ( bday 𝐵)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
331, 4, 5, 7, 7, 7, 7, 32mulsproplem1 27995 . 2 (𝜑 → ((𝑋 ·s 𝐵) ∈ No ∧ (( 0s <s 0s ∧ 0s <s 0s ) → (( 0s ·s 0s ) -s ( 0s ·s 0s )) <s (( 0s ·s 0s ) -s ( 0s ·s 0s )))))
3433simpld 494 1 (𝜑 → (𝑋 ·s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3909  c0 4292   class class class wbr 5102  Oncon0 6320  cfv 6499  (class class class)co 7369   +no cnadd 8606   No csur 27527   <s cslt 27528   bday cbday 27529   0s c0s 27710   O cold 27727   -s csubs 27902   ·s cmuls 27985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-0s 27712  df-made 27731  df-old 27732
This theorem is referenced by:  mulsproplem5  27999  mulsproplem6  28000  mulsproplem7  28001  mulsproplem8  28002  mulsproplem9  28003  mulsproplem13  28007
  Copyright terms: Public domain W3C validator