Proof of Theorem mulsproplem5
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | leftssno 27920 | . . . 4
⊢ ( L
‘𝐴) ⊆  No | 
| 2 |  | mulsproplem5.3 | . . . 4
⊢ (𝜑 → 𝑃 ∈ ( L ‘𝐴)) | 
| 3 | 1, 2 | sselid 3980 | . . 3
⊢ (𝜑 → 𝑃 ∈  No
) | 
| 4 |  | mulsproplem5.5 | . . . 4
⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) | 
| 5 | 1, 4 | sselid 3980 | . . 3
⊢ (𝜑 → 𝑇 ∈  No
) | 
| 6 |  | sltlin 27795 | . . 3
⊢ ((𝑃 ∈ 
No  ∧ 𝑇 ∈
 No ) → (𝑃 <s 𝑇 ∨ 𝑃 = 𝑇 ∨ 𝑇 <s 𝑃)) | 
| 7 | 3, 5, 6 | syl2anc 584 | . 2
⊢ (𝜑 → (𝑃 <s 𝑇 ∨ 𝑃 = 𝑇 ∨ 𝑇 <s 𝑃)) | 
| 8 |  | mulsproplem.1 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 9 |  | leftssold 27918 | . . . . . . . . . 10
⊢ ( L
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) | 
| 10 | 9, 2 | sselid 3980 | . . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ( O ‘(
bday ‘𝐴))) | 
| 11 |  | mulsproplem5.2 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈  No
) | 
| 12 | 8, 10, 11 | mulsproplem2 28144 | . . . . . . . 8
⊢ (𝜑 → (𝑃 ·s 𝐵) ∈  No
) | 
| 13 |  | mulsproplem5.1 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈  No
) | 
| 14 |  | leftssold 27918 | . . . . . . . . . 10
⊢ ( L
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) | 
| 15 |  | mulsproplem5.4 | . . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ( L ‘𝐵)) | 
| 16 | 14, 15 | sselid 3980 | . . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ( O ‘(
bday ‘𝐵))) | 
| 17 | 8, 13, 16 | mulsproplem3 28145 | . . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑄) ∈  No
) | 
| 18 | 12, 17 | addscld 28014 | . . . . . . 7
⊢ (𝜑 → ((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) ∈  No
) | 
| 19 | 8, 10, 16 | mulsproplem4 28146 | . . . . . . 7
⊢ (𝜑 → (𝑃 ·s 𝑄) ∈  No
) | 
| 20 | 18, 19 | subscld 28094 | . . . . . 6
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) ∈  No
) | 
| 21 | 20 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) ∈  No
) | 
| 22 | 9, 4 | sselid 3980 | . . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ ( O ‘(
bday ‘𝐴))) | 
| 23 | 8, 22, 11 | mulsproplem2 28144 | . . . . . . . 8
⊢ (𝜑 → (𝑇 ·s 𝐵) ∈  No
) | 
| 24 | 23, 17 | addscld 28014 | . . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) ∈  No
) | 
| 25 | 8, 22, 16 | mulsproplem4 28146 | . . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑄) ∈  No
) | 
| 26 | 24, 25 | subscld 28094 | . . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) ∈  No
) | 
| 27 | 26 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) ∈  No
) | 
| 28 |  | rightssold 27919 | . . . . . . . . . 10
⊢ ( R
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) | 
| 29 |  | mulsproplem5.6 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) | 
| 30 | 28, 29 | sselid 3980 | . . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ( O ‘(
bday ‘𝐵))) | 
| 31 | 8, 13, 30 | mulsproplem3 28145 | . . . . . . . 8
⊢ (𝜑 → (𝐴 ·s 𝑈) ∈  No
) | 
| 32 | 23, 31 | addscld 28014 | . . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈  No
) | 
| 33 | 8, 22, 30 | mulsproplem4 28146 | . . . . . . 7
⊢ (𝜑 → (𝑇 ·s 𝑈) ∈  No
) | 
| 34 | 32, 33 | subscld 28094 | . . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈  No
) | 
| 35 | 34 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈  No
) | 
| 36 |  | ssltleft 27910 | . . . . . . . . . . 11
⊢ (𝐵 ∈ 
No  → ( L ‘𝐵) <<s {𝐵}) | 
| 37 | 11, 36 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐵) <<s {𝐵}) | 
| 38 |  | snidg 4659 | . . . . . . . . . . 11
⊢ (𝐵 ∈ 
No  → 𝐵 ∈
{𝐵}) | 
| 39 | 11, 38 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ {𝐵}) | 
| 40 | 37, 15, 39 | ssltsepcd 27840 | . . . . . . . . 9
⊢ (𝜑 → 𝑄 <s 𝐵) | 
| 41 |  | 0sno 27872 | . . . . . . . . . . . 12
⊢ 
0s ∈  No | 
| 42 | 41 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 0s ∈  No ) | 
| 43 |  | leftssno 27920 | . . . . . . . . . . . 12
⊢ ( L
‘𝐵) ⊆  No | 
| 44 | 43, 15 | sselid 3980 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈  No
) | 
| 45 |  | bday0s 27874 | . . . . . . . . . . . . . . . 16
⊢ ( bday ‘ 0s ) = ∅ | 
| 46 | 45, 45 | oveq12i 7444 | . . . . . . . . . . . . . . 15
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no
∅) | 
| 47 |  | 0elon 6437 | . . . . . . . . . . . . . . . 16
⊢ ∅
∈ On | 
| 48 |  | naddrid 8722 | . . . . . . . . . . . . . . . 16
⊢ (∅
∈ On → (∅ +no ∅) = ∅) | 
| 49 | 47, 48 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ (∅
+no ∅) = ∅ | 
| 50 | 46, 49 | eqtri 2764 | . . . . . . . . . . . . . 14
⊢ (( bday ‘ 0s ) +no ( bday ‘ 0s )) =
∅ | 
| 51 | 50 | uneq1i 4163 | . . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))))) =
(∅ ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))))) | 
| 52 |  | 0un 4395 | . . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) | 
| 53 | 51, 52 | eqtri 2764 | . . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) | 
| 54 |  | oldbdayim 27928 | . . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑃) ∈
( bday ‘𝐴)) | 
| 55 | 10, 54 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑃)
∈ ( bday ‘𝐴)) | 
| 56 |  | oldbdayim 27928 | . . . . . . . . . . . . . . . . 17
⊢ (𝑄 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑄) ∈
( bday ‘𝐵)) | 
| 57 | 16, 56 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑄)
∈ ( bday ‘𝐵)) | 
| 58 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐴) ∈ On | 
| 59 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝐵) ∈ On | 
| 60 |  | naddel12 8739 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑃) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑄) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 61 | 58, 59, 60 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑄) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 62 | 55, 57, 61 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑃) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 63 |  | oldbdayim 27928 | . . . . . . . . . . . . . . . . 17
⊢ (𝑇 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑇) ∈
( bday ‘𝐴)) | 
| 64 | 22, 63 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑇)
∈ ( bday ‘𝐴)) | 
| 65 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑇) ∈ On | 
| 66 |  | naddel1 8726 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑇)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑇) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 67 | 65, 58, 59, 66 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑇) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 68 | 64, 67 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 69 | 62, 68 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑃) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑇) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 70 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑃) ∈ On | 
| 71 |  | naddel1 8726 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑃) ∈ On ∧ (
bday ‘𝐴)
∈ On ∧ ( bday ‘𝐵) ∈ On) → ((
bday ‘𝑃)
∈ ( bday ‘𝐴) ↔ (( bday
‘𝑃) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 72 | 70, 58, 59, 71 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑃) ∈ ( bday
‘𝐴) ↔
(( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 73 | 55, 72 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑃) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 74 |  | naddel12 8739 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑄) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 75 | 58, 59, 74 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑄) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 76 | 64, 57, 75 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 77 | 73, 76 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑃) +no
( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑇) +no ( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 78 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . . 18
⊢ ( bday ‘𝑄) ∈ On | 
| 79 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑃) ∈ On ∧ (
bday ‘𝑄)
∈ On) → (( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
On) | 
| 80 | 70, 78, 79 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
On | 
| 81 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On) | 
| 82 | 65, 59, 81 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
On | 
| 83 | 80, 82 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
On | 
| 84 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑃) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
On) | 
| 85 | 70, 59, 84 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
On | 
| 86 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑄)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
On) | 
| 87 | 65, 78, 86 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
On | 
| 88 | 85, 87 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
On | 
| 89 |  | naddcl 8716 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) | 
| 90 | 58, 59, 89 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On | 
| 91 |  | onunel 6488 | . . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
On ∧ ((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 92 | 83, 88, 90, 91 | mp3an 1462 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 93 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 94 | 80, 82, 90, 93 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 95 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑃) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑇) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 96 | 85, 87, 90, 95 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 97 | 94, 96 | anbi12i 628 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 98 | 92, 97 | bitri 275 | . . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 99 | 69, 77, 98 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑃) +no
( bday ‘𝑄)) ∪ (( bday
‘𝑇) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑇) +no ( bday ‘𝑄)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 100 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝑇) +no ( bday
‘𝐵))) ∪
((( bday ‘𝑃) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑇) +no ( bday
‘𝑄)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) | 
| 101 | 99, 100 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑃) +no
( bday ‘𝑄)) ∪ (( bday
‘𝑇) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑇) +no ( bday ‘𝑄)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 102 | 53, 101 | eqeltrid 2844 | . . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑃) +no ( bday ‘𝑄)) ∪ (( bday
‘𝑇) +no ( bday ‘𝐵))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑇) +no ( bday ‘𝑄))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 103 | 8, 42, 42, 3, 5, 44, 11, 102 | mulsproplem1 28143 | . . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈  No 
∧ ((𝑃 <s 𝑇 ∧ 𝑄 <s 𝐵) → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄))))) | 
| 104 | 103 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → ((𝑃 <s 𝑇 ∧ 𝑄 <s 𝐵) → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)))) | 
| 105 | 40, 104 | mpan2d 694 | . . . . . . . 8
⊢ (𝜑 → (𝑃 <s 𝑇 → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)))) | 
| 106 | 105 | imp 406 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄))) | 
| 107 | 12, 19 | subscld 28094 | . . . . . . . . 9
⊢ (𝜑 → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) ∈  No
) | 
| 108 | 23, 25 | subscld 28094 | . . . . . . . . 9
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) ∈  No
) | 
| 109 | 107, 108,
17 | sltadd1d 28032 | . . . . . . . 8
⊢ (𝜑 → (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) ↔ (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) +s (𝐴 ·s 𝑄)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) +s (𝐴 ·s 𝑄)))) | 
| 110 | 109 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) ↔ (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) +s (𝐴 ·s 𝑄)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) +s (𝐴 ·s 𝑄)))) | 
| 111 | 106, 110 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) +s (𝐴 ·s 𝑄)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) +s (𝐴 ·s 𝑄))) | 
| 112 | 12, 17, 19 | addsubsd 28113 | . . . . . . 7
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) = (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) +s (𝐴 ·s 𝑄))) | 
| 113 | 112 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) = (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑄)) +s (𝐴 ·s 𝑄))) | 
| 114 | 23, 17, 25 | addsubsd 28113 | . . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) +s (𝐴 ·s 𝑄))) | 
| 115 | 114 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑄)) +s (𝐴 ·s 𝑄))) | 
| 116 | 111, 113,
115 | 3brtr4d 5174 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄))) | 
| 117 |  | ssltleft 27910 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 
No  → ( L ‘𝐴) <<s {𝐴}) | 
| 118 | 13, 117 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐴) <<s {𝐴}) | 
| 119 |  | snidg 4659 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 
No  → 𝐴 ∈
{𝐴}) | 
| 120 | 13, 119 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) | 
| 121 | 118, 4, 120 | ssltsepcd 27840 | . . . . . . . . 9
⊢ (𝜑 → 𝑇 <s 𝐴) | 
| 122 |  | lltropt 27912 | . . . . . . . . . . 11
⊢ ( L
‘𝐵) <<s ( R
‘𝐵) | 
| 123 | 122 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵)) | 
| 124 | 123, 15, 29 | ssltsepcd 27840 | . . . . . . . . 9
⊢ (𝜑 → 𝑄 <s 𝑈) | 
| 125 |  | rightssno 27921 | . . . . . . . . . . . 12
⊢ ( R
‘𝐵) ⊆  No | 
| 126 | 125, 29 | sselid 3980 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈  No
) | 
| 127 | 50 | uneq1i 4163 | . . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) | 
| 128 |  | 0un 4395 | . . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) | 
| 129 | 127, 128 | eqtri 2764 | . . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) | 
| 130 |  | oldbdayim 27928 | . . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ ( O ‘( bday ‘𝐵)) → ( bday
‘𝑈) ∈
( bday ‘𝐵)) | 
| 131 | 30, 130 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (
bday ‘𝑈)
∈ ( bday ‘𝐵)) | 
| 132 |  | bdayelon 27822 | . . . . . . . . . . . . . . . . 17
⊢ ( bday ‘𝑈) ∈ On | 
| 133 |  | naddel2 8727 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑈) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑈)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 134 | 132, 59, 58, 133 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑈) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 135 | 131, 134 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 136 | 76, 135 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 137 |  | naddel12 8739 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑇) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 138 | 58, 59, 137 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 139 | 64, 131, 138 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 140 |  | naddel2 8727 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝑄) ∈ On ∧ (
bday ‘𝐵)
∈ On ∧ ( bday ‘𝐴) ∈ On) → ((
bday ‘𝑄)
∈ ( bday ‘𝐵) ↔ (( bday
‘𝐴) +no ( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 141 | 78, 59, 58, 140 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑄) ∈ ( bday
‘𝐵) ↔
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 142 | 57, 141 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝐴) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 143 | 139, 142 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 144 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On) | 
| 145 | 58, 132, 144 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
On | 
| 146 | 87, 145 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On | 
| 147 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑇) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On) | 
| 148 | 65, 132, 147 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
On | 
| 149 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑄)
∈ On) → (( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
On) | 
| 150 | 58, 78, 149 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
On | 
| 151 | 148, 150 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
On | 
| 152 |  | onunel 6488 | . . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 153 | 146, 151,
90, 152 | mp3an 1462 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 154 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 155 | 87, 145, 90, 154 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 156 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 157 | 148, 150,
90, 156 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 158 | 155, 157 | anbi12i 628 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 159 | 153, 158 | bitri 275 | . . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 160 | 136, 143,
159 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 161 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) | 
| 162 | 160, 161 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 163 | 129, 162 | eqeltrid 2844 | . . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 164 | 8, 42, 42, 5, 13, 44, 126, 163 | mulsproplem1 28143 | . . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈  No 
∧ ((𝑇 <s 𝐴 ∧ 𝑄 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄))))) | 
| 165 | 164 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝐴 ∧ 𝑄 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)))) | 
| 166 | 121, 124,
165 | mp2and 699 | . . . . . . . 8
⊢ (𝜑 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄))) | 
| 167 | 33, 31, 25, 17 | sltsubsub3bd 28116 | . . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)) ↔ ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) | 
| 168 | 17, 25 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄)) ∈  No
) | 
| 169 | 31, 33 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ∈  No
) | 
| 170 | 168, 169,
23 | sltadd2d 28031 | . . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) | 
| 171 | 167, 170 | bitrd 279 | . . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)) ↔ ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈))))) | 
| 172 | 166, 171 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄))) <s ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) | 
| 173 | 23, 17, 25 | addsubsassd 28112 | . . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑇 ·s 𝑄)))) | 
| 174 | 23, 31, 33 | addsubsassd 28112 | . . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = ((𝑇 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑇 ·s 𝑈)))) | 
| 175 | 172, 173,
174 | 3brtr4d 5174 | . . . . . 6
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | 
| 176 | 175 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | 
| 177 | 21, 27, 35, 116, 176 | slttrd 27805 | . . . 4
⊢ ((𝜑 ∧ 𝑃 <s 𝑇) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | 
| 178 | 177 | ex 412 | . . 3
⊢ (𝜑 → (𝑃 <s 𝑇 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) | 
| 179 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑃 = 𝑇 → (𝑃 ·s 𝐵) = (𝑇 ·s 𝐵)) | 
| 180 | 179 | oveq1d 7447 | . . . . . 6
⊢ (𝑃 = 𝑇 → ((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) = ((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄))) | 
| 181 |  | oveq1 7439 | . . . . . 6
⊢ (𝑃 = 𝑇 → (𝑃 ·s 𝑄) = (𝑇 ·s 𝑄)) | 
| 182 | 180, 181 | oveq12d 7450 | . . . . 5
⊢ (𝑃 = 𝑇 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) = (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄))) | 
| 183 | 182 | breq1d 5152 | . . . 4
⊢ (𝑃 = 𝑇 → ((((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ↔ (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑇 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) | 
| 184 | 175, 183 | syl5ibrcom 247 | . . 3
⊢ (𝜑 → (𝑃 = 𝑇 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) | 
| 185 | 20 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) ∈  No
) | 
| 186 | 12, 31 | addscld 28014 | . . . . . . 7
⊢ (𝜑 → ((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) ∈  No
) | 
| 187 | 8, 10, 30 | mulsproplem4 28146 | . . . . . . 7
⊢ (𝜑 → (𝑃 ·s 𝑈) ∈  No
) | 
| 188 | 186, 187 | subscld 28094 | . . . . . 6
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) ∈  No
) | 
| 189 | 188 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) ∈  No
) | 
| 190 | 34 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) ∈  No
) | 
| 191 | 118, 2, 120 | ssltsepcd 27840 | . . . . . . . . 9
⊢ (𝜑 → 𝑃 <s 𝐴) | 
| 192 | 50 | uneq1i 4163 | . . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(∅ ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) | 
| 193 |  | 0un 4395 | . . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) | 
| 194 | 192, 193 | eqtri 2764 | . . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))))) =
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) | 
| 195 | 62, 135 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑃) +no
( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 196 |  | naddel12 8739 | . . . . . . . . . . . . . . . . 17
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝐵)
∈ On) → ((( bday ‘𝑃) ∈ (
bday ‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 197 | 58, 59, 196 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) ∈ ( bday
‘𝐴) ∧
( bday ‘𝑈) ∈ ( bday
‘𝐵)) →
(( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) | 
| 198 | 55, 131, 197 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((
bday ‘𝑃) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 199 | 198, 142 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑃) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝐴) +no ( bday ‘𝑄)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 200 | 80, 145 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On | 
| 201 |  | naddcl 8716 | . . . . . . . . . . . . . . . . . 18
⊢ ((( bday ‘𝑃) ∈ On ∧ (
bday ‘𝑈)
∈ On) → (( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
On) | 
| 202 | 70, 132, 201 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ (( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
On | 
| 203 | 202, 150 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
On | 
| 204 |  | onunel 6488 | . . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 205 | 200, 203,
90, 204 | mp3an 1462 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 206 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 207 | 80, 145, 90, 206 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 208 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝑄)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 209 | 202, 150,
90, 208 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 210 | 207, 209 | anbi12i 628 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 211 | 205, 210 | bitri 275 | . . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ∧
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝐴) +no ( bday
‘𝑄)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 212 | 195, 199,
211 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑃) +no
( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 213 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢
((((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑃) +no ( bday
‘𝑄)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑃) +no ( bday
‘𝑈)) ∪
(( bday ‘𝐴) +no ( bday
‘𝑄)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) | 
| 214 | 212, 213 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑃) +no
( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 215 | 194, 214 | eqeltrid 2844 | . . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑃) +no ( bday ‘𝑄)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑃) +no ( bday ‘𝑈)) ∪ (( bday
‘𝐴) +no ( bday ‘𝑄))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 216 | 8, 42, 42, 3, 13, 44, 126, 215 | mulsproplem1 28143 | . . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈  No 
∧ ((𝑃 <s 𝐴 ∧ 𝑄 <s 𝑈) → ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄))))) | 
| 217 | 216 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → ((𝑃 <s 𝐴 ∧ 𝑄 <s 𝑈) → ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)))) | 
| 218 | 191, 124,
217 | mp2and 699 | . . . . . . . 8
⊢ (𝜑 → ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄))) | 
| 219 | 187, 31, 19, 17 | sltsubsub3bd 28116 | . . . . . . . . 9
⊢ (𝜑 → (((𝑃 ·s 𝑈) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)) ↔ ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈)))) | 
| 220 | 17, 19 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄)) ∈  No
) | 
| 221 | 31, 187 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈)) ∈  No
) | 
| 222 | 220, 221,
12 | sltadd2d 28031 | . . . . . . . . 9
⊢ (𝜑 → (((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈)) ↔ ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄))) <s ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈))))) | 
| 223 | 219, 222 | bitrd 279 | . . . . . . . 8
⊢ (𝜑 → (((𝑃 ·s 𝑈) -s (𝑃 ·s 𝑄)) <s ((𝐴 ·s 𝑈) -s (𝐴 ·s 𝑄)) ↔ ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄))) <s ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈))))) | 
| 224 | 218, 223 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄))) <s ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈)))) | 
| 225 | 12, 17, 19 | addsubsassd 28112 | . . . . . . 7
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) = ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑄) -s (𝑃 ·s 𝑄)))) | 
| 226 | 12, 31, 187 | addsubsassd 28112 | . . . . . . 7
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) = ((𝑃 ·s 𝐵) +s ((𝐴 ·s 𝑈) -s (𝑃 ·s 𝑈)))) | 
| 227 | 224, 225,
226 | 3brtr4d 5174 | . . . . . 6
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈))) | 
| 228 | 227 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈))) | 
| 229 |  | ssltright 27911 | . . . . . . . . . . 11
⊢ (𝐵 ∈ 
No  → {𝐵}
<<s ( R ‘𝐵)) | 
| 230 | 11, 229 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → {𝐵} <<s ( R ‘𝐵)) | 
| 231 | 230, 39, 29 | ssltsepcd 27840 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 <s 𝑈) | 
| 232 | 50 | uneq1i 4163 | . . . . . . . . . . . . 13
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))))) =
(∅ ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))))) | 
| 233 |  | 0un 4395 | . . . . . . . . . . . . 13
⊢ (∅
∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) | 
| 234 | 232, 233 | eqtri 2764 | . . . . . . . . . . . 12
⊢ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))))) =
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) | 
| 235 |  | onunel 6488 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝑃) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 236 | 82, 202, 90, 235 | mp3an 1462 | . . . . . . . . . . . . . . 15
⊢ (((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 237 | 68, 198, 236 | sylanbrc 583 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑃) +no ( bday ‘𝑈))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 238 | 139, 73 | jca 511 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((
bday ‘𝑇) +no
( bday ‘𝑈)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)) ∧ (( bday
‘𝑃) +no ( bday ‘𝐵)) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵)))) | 
| 239 | 82, 202 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
On | 
| 240 | 148, 85 | onun2i 6505 | . . . . . . . . . . . . . . . 16
⊢ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
On | 
| 241 |  | onunel 6488 | . . . . . . . . . . . . . . . 16
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
On ∧ ((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
On ∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → ((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 242 | 239, 240,
90, 241 | mp3an 1462 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 243 |  | onunel 6488 | . . . . . . . . . . . . . . . . 17
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈ On
∧ (( bday ‘𝑃) +no ( bday
‘𝐵)) ∈ On
∧ (( bday ‘𝐴) +no ( bday
‘𝐵)) ∈
On) → (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 244 | 148, 85, 90, 243 | mp3an 1462 | . . . . . . . . . . . . . . . 16
⊢ (((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)))) | 
| 245 | 244 | anbi2i 623 | . . . . . . . . . . . . . . 15
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 246 | 242, 245 | bitri 275 | . . . . . . . . . . . . . 14
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ↔
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) ∧
(( bday ‘𝑃) +no ( bday
‘𝐵)) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵))))) | 
| 247 | 237, 238,
246 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑃) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑃) +no ( bday ‘𝐵)))) ∈ (( bday
‘𝐴) +no ( bday ‘𝐵))) | 
| 248 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢
((((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) ∈
(( bday ‘𝐴) +no ( bday
‘𝐵)) →
(((( bday ‘𝑇) +no ( bday
‘𝐵)) ∪
(( bday ‘𝑃) +no ( bday
‘𝑈))) ∪
((( bday ‘𝑇) +no ( bday
‘𝑈)) ∪
(( bday ‘𝑃) +no ( bday
‘𝐵)))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸)))))) | 
| 249 | 247, 248 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((((
bday ‘𝑇) +no
( bday ‘𝐵)) ∪ (( bday
‘𝑃) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑃) +no ( bday ‘𝐵)))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 250 | 234, 249 | eqeltrid 2844 | . . . . . . . . . . 11
⊢ (𝜑 → (((
bday ‘ 0s ) +no ( bday
‘ 0s )) ∪ (((( bday
‘𝑇) +no ( bday ‘𝐵)) ∪ (( bday
‘𝑃) +no ( bday ‘𝑈))) ∪ ((( bday
‘𝑇) +no ( bday ‘𝑈)) ∪ (( bday
‘𝑃) +no ( bday ‘𝐵))))) ∈ ((( bday
‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday
‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday
‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday
‘𝐷) +no ( bday ‘𝐸)))))) | 
| 251 | 8, 42, 42, 5, 3, 11, 126, 250 | mulsproplem1 28143 | . . . . . . . . . 10
⊢ (𝜑 → (( 0s
·s 0s ) ∈  No 
∧ ((𝑇 <s 𝑃 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵))))) | 
| 252 | 251 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → ((𝑇 <s 𝑃 ∧ 𝐵 <s 𝑈) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵)))) | 
| 253 | 231, 252 | mpan2d 694 | . . . . . . . 8
⊢ (𝜑 → (𝑇 <s 𝑃 → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵)))) | 
| 254 | 253 | imp 406 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → ((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵))) | 
| 255 | 33, 23, 187, 12 | sltsubsub2bd 28115 | . . . . . . . . 9
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵)) ↔ ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)))) | 
| 256 | 12, 187 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) ∈  No
) | 
| 257 | 23, 33 | subscld 28094 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ∈  No
) | 
| 258 | 256, 257,
31 | sltadd1d 28032 | . . . . . . . . 9
⊢ (𝜑 → (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) <s ((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) ↔ (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) | 
| 259 | 255, 258 | bitrd 279 | . . . . . . . 8
⊢ (𝜑 → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵)) ↔ (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) | 
| 260 | 259 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑇 ·s 𝑈) -s (𝑇 ·s 𝐵)) <s ((𝑃 ·s 𝑈) -s (𝑃 ·s 𝐵)) ↔ (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈)))) | 
| 261 | 254, 260 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈)) <s (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) | 
| 262 | 12, 31, 187 | addsubsd 28113 | . . . . . . 7
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) = (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈))) | 
| 263 | 262 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) = (((𝑃 ·s 𝐵) -s (𝑃 ·s 𝑈)) +s (𝐴 ·s 𝑈))) | 
| 264 | 23, 31, 33 | addsubsd 28113 | . . . . . . 7
⊢ (𝜑 → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) | 
| 265 | 264 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)) = (((𝑇 ·s 𝐵) -s (𝑇 ·s 𝑈)) +s (𝐴 ·s 𝑈))) | 
| 266 | 261, 263,
265 | 3brtr4d 5174 | . . . . 5
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑃 ·s 𝑈)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | 
| 267 | 185, 189,
190, 228, 266 | slttrd 27805 | . . . 4
⊢ ((𝜑 ∧ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | 
| 268 | 267 | ex 412 | . . 3
⊢ (𝜑 → (𝑇 <s 𝑃 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) | 
| 269 | 178, 184,
268 | 3jaod 1430 | . 2
⊢ (𝜑 → ((𝑃 <s 𝑇 ∨ 𝑃 = 𝑇 ∨ 𝑇 <s 𝑃) → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))) | 
| 270 | 7, 269 | mpd 15 | 1
⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) |