![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mainer | Structured version Visualization version GIF version |
Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
mainer | ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj2 38785 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴) | |
2 | eldisjim 38740 | . . . 4 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴) |
4 | n0eldmqseq 38605 | . . . . 5 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
5 | 4 | adantl 481 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴) |
6 | eldisjn0el 38762 | . . . . 5 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
8 | 5, 7 | mpbid 232 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
9 | 3, 8 | jca 511 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
10 | dferALTV2 38624 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
11 | dfcomember3 38630 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ∪ cuni 4931 dom cdm 5700 / cqs 8762 ∼ ccoels 38136 EqvRel weqvrel 38152 CoElEqvRel wcoeleqvrel 38154 ErALTV werALTV 38161 CoMembEr wcomember 38163 ElDisj weldisj 38171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coss 38367 df-coels 38368 df-refrel 38468 df-cnvrefrel 38483 df-symrel 38500 df-trrel 38530 df-eqvrel 38541 df-coeleqvrel 38543 df-dmqs 38595 df-erALTV 38620 df-comember 38622 df-funALTV 38638 df-disjALTV 38661 df-eldisj 38663 |
This theorem is referenced by: partimcomember 38791 fences 38800 |
Copyright terms: Public domain | W3C validator |