Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mainer Structured version   Visualization version   GIF version

Theorem mainer 38819
Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
mainer (𝑅 ErALTV 𝐴 → CoMembEr 𝐴)

Proof of Theorem mainer
StepHypRef Expression
1 eqvrelqseqdisj2 38814 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴)
2 eldisjim 38769 . . . 4 ( ElDisj 𝐴 → CoElEqvRel 𝐴)
31, 2syl 17 . . 3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴)
4 n0eldmqseq 38634 . . . . 5 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
54adantl 481 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴)
6 eldisjn0el 38791 . . . . 5 ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴))
71, 6syl 17 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴))
85, 7mpbid 232 . . 3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( 𝐴 /𝐴) = 𝐴)
93, 8jca 511 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
10 dferALTV2 38653 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
11 dfcomember3 38659 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
129, 10, 113imtr4i 292 1 (𝑅 ErALTV 𝐴 → CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4292   cuni 4867  dom cdm 5631   / cqs 8647  ccoels 38163   EqvRel weqvrel 38179   CoElEqvRel wcoeleqvrel 38181   ErALTV werALTV 38188   CoMembEr wcomember 38190   ElDisj weldisj 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654  df-coss 38395  df-coels 38396  df-refrel 38496  df-cnvrefrel 38511  df-symrel 38528  df-trrel 38558  df-eqvrel 38569  df-coeleqvrel 38571  df-dmqs 38623  df-erALTV 38649  df-comember 38651  df-funALTV 38667  df-disjALTV 38690  df-eldisj 38692
This theorem is referenced by:  partimcomember  38820  fences  38829
  Copyright terms: Public domain W3C validator