| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mainer | Structured version Visualization version GIF version | ||
| Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| mainer | ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 38828 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴) | |
| 2 | eldisjim 38783 | . . . 4 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴) |
| 4 | n0eldmqseq 38648 | . . . . 5 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴) |
| 6 | eldisjn0el 38805 | . . . . 5 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 8 | 5, 7 | mpbid 232 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
| 9 | 3, 8 | jca 511 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 10 | dferALTV2 38667 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 11 | dfcomember3 38673 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ∪ cuni 4874 dom cdm 5641 / cqs 8673 ∼ ccoels 38177 EqvRel weqvrel 38193 CoElEqvRel wcoeleqvrel 38195 ErALTV werALTV 38202 CoMembEr wcomember 38204 ElDisj weldisj 38212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 df-coss 38409 df-coels 38410 df-refrel 38510 df-cnvrefrel 38525 df-symrel 38542 df-trrel 38572 df-eqvrel 38583 df-coeleqvrel 38585 df-dmqs 38637 df-erALTV 38663 df-comember 38665 df-funALTV 38681 df-disjALTV 38704 df-eldisj 38706 |
| This theorem is referenced by: partimcomember 38834 fences 38843 |
| Copyright terms: Public domain | W3C validator |