| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mainer | Structured version Visualization version GIF version | ||
| Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| mainer | ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 38933 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴) | |
| 2 | eldisjim 38888 | . . . 4 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴) |
| 4 | n0eldmqseq 38753 | . . . . 5 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴) |
| 6 | eldisjn0el 38910 | . . . . 5 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 8 | 5, 7 | mpbid 232 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
| 9 | 3, 8 | jca 511 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 10 | dferALTV2 38772 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 11 | dfcomember3 38778 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4282 ∪ cuni 4858 dom cdm 5619 / cqs 8627 ∼ ccoels 38229 EqvRel weqvrel 38245 CoElEqvRel wcoeleqvrel 38247 ErALTV werALTV 38254 CoMembEr wcomember 38256 ElDisj weldisj 38264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 df-coss 38519 df-coels 38520 df-refrel 38610 df-cnvrefrel 38625 df-symrel 38642 df-trrel 38676 df-eqvrel 38687 df-coeleqvrel 38689 df-dmqs 38741 df-erALTV 38768 df-comember 38770 df-funALTV 38786 df-disjALTV 38809 df-eldisj 38811 |
| This theorem is referenced by: partimcomember 38939 fences 38948 |
| Copyright terms: Public domain | W3C validator |