Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mainer Structured version   Visualization version   GIF version

Theorem mainer 38832
Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
mainer (𝑅 ErALTV 𝐴 → CoMembEr 𝐴)

Proof of Theorem mainer
StepHypRef Expression
1 eqvrelqseqdisj2 38827 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴)
2 eldisjim 38782 . . . 4 ( ElDisj 𝐴 → CoElEqvRel 𝐴)
31, 2syl 17 . . 3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴)
4 n0eldmqseq 38647 . . . . 5 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
54adantl 481 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴)
6 eldisjn0el 38804 . . . . 5 ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴))
71, 6syl 17 . . . 4 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴))
85, 7mpbid 232 . . 3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( 𝐴 /𝐴) = 𝐴)
93, 8jca 511 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
10 dferALTV2 38666 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
11 dfcomember3 38672 . 2 ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
129, 10, 113imtr4i 292 1 (𝑅 ErALTV 𝐴 → CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4284   cuni 4858  dom cdm 5619   / cqs 8624  ccoels 38176   EqvRel weqvrel 38192   CoElEqvRel wcoeleqvrel 38194   ErALTV werALTV 38201   CoMembEr wcomember 38203   ElDisj weldisj 38211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38408  df-coels 38409  df-refrel 38509  df-cnvrefrel 38524  df-symrel 38541  df-trrel 38571  df-eqvrel 38582  df-coeleqvrel 38584  df-dmqs 38636  df-erALTV 38662  df-comember 38664  df-funALTV 38680  df-disjALTV 38703  df-eldisj 38705
This theorem is referenced by:  partimcomember  38833  fences  38842
  Copyright terms: Public domain W3C validator