| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mainer | Structured version Visualization version GIF version | ||
| Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| mainer | ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 38814 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴) | |
| 2 | eldisjim 38769 | . . . 4 ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → CoElEqvRel 𝐴) |
| 4 | n0eldmqseq 38634 | . . . . 5 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴) |
| 6 | eldisjn0el 38791 | . . . . 5 ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 8 | 5, 7 | mpbid 232 | . . 3 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
| 9 | 3, 8 | jca 511 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| 10 | dferALTV2 38653 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 11 | dfcomember3 38659 | . 2 ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 ∪ cuni 4867 dom cdm 5631 / cqs 8647 ∼ ccoels 38163 EqvRel weqvrel 38179 CoElEqvRel wcoeleqvrel 38181 ErALTV werALTV 38188 CoMembEr wcomember 38190 ElDisj weldisj 38198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 df-qs 8654 df-coss 38395 df-coels 38396 df-refrel 38496 df-cnvrefrel 38511 df-symrel 38528 df-trrel 38558 df-eqvrel 38569 df-coeleqvrel 38571 df-dmqs 38623 df-erALTV 38649 df-comember 38651 df-funALTV 38667 df-disjALTV 38690 df-eldisj 38692 |
| This theorem is referenced by: partimcomember 38820 fences 38829 |
| Copyright terms: Public domain | W3C validator |