Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fences3 Structured version   Visualization version   GIF version

Theorem fences3 38794
Description: Implication of eqvrelqseqdisj2 38793 and n0eldmqseq 38613, see comment of fences 38808. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
fences3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem fences3
StepHypRef Expression
1 eqvrelqseqdisj2 38793 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴)
2 n0eldmqseq 38613 . . 3 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
32adantl 481 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴)
41, 3jca 511 1 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  c0 4308  dom cdm 5654   / cqs 8716   EqvRel weqvrel 38162   ElDisj weldisj 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8719  df-qs 8723  df-coss 38375  df-refrel 38476  df-cnvrefrel 38491  df-symrel 38508  df-trrel 38538  df-eqvrel 38549  df-funALTV 38646  df-disjALTV 38669  df-eldisj 38671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator