Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fences3 | Structured version Visualization version GIF version |
Description: Implication of eqvrelqseqdisj2 37068 and n0eldmqseq 36888, see comment of fences 37083. (Contributed by Peter Mazsa, 30-Dec-2024.) |
Ref | Expression |
---|---|
fences3 | ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj2 37068 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴) | |
2 | n0eldmqseq 36888 | . . 3 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
3 | 2 | adantl 482 | . 2 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴) |
4 | 1, 3 | jca 512 | 1 ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∅c0 4266 dom cdm 5607 / cqs 8546 EqvRel weqvrel 36427 ElDisj weldisj 36446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5512 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8549 df-qs 8553 df-coss 36650 df-refrel 36751 df-cnvrefrel 36766 df-symrel 36783 df-trrel 36813 df-eqvrel 36824 df-funALTV 36921 df-disjALTV 36944 df-eldisj 36946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |