Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fences3 Structured version   Visualization version   GIF version

Theorem fences3 38829
Description: Implication of eqvrelqseqdisj2 38828 and n0eldmqseq 38648, see comment of fences 38843. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
fences3 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))

Proof of Theorem fences3
StepHypRef Expression
1 eqvrelqseqdisj2 38828 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ElDisj 𝐴)
2 n0eldmqseq 38648 . . 3 ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴)
32adantl 481 . 2 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ¬ ∅ ∈ 𝐴)
41, 3jca 511 1 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4299  dom cdm 5641   / cqs 8673   EqvRel weqvrel 38193   ElDisj weldisj 38212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680  df-coss 38409  df-refrel 38510  df-cnvrefrel 38525  df-symrel 38542  df-trrel 38572  df-eqvrel 38583  df-funALTV 38681  df-disjALTV 38704  df-eldisj 38706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator