Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0el3 | Structured version Visualization version GIF version |
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
Ref | Expression |
---|---|
n0el3 | ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0el2 36395 | . . . . 5 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
3 | 2 | qseq1d 36352 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = (𝐴 / (◡ E ↾ 𝐴))) |
4 | qsresid 36387 | . . . 4 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = (𝐴 / ◡ E ) | |
5 | qsid 8530 | . . . 4 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
6 | 4, 5 | eqtri 2766 | . . 3 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = 𝐴 |
7 | 3, 6 | eqtrdi 2795 | . 2 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
8 | n0eldmqseq 36689 | . 2 ⊢ ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
9 | 7, 8 | impbii 208 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∅c0 4253 E cep 5485 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 |
This theorem is referenced by: cnvepresdmqss 36691 cnvepresdmqs 36692 |
Copyright terms: Public domain | W3C validator |