Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0el3 | Structured version Visualization version GIF version |
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
Ref | Expression |
---|---|
n0el3 | ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0el2 36468 | . . . . 5 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
3 | 2 | qseq1d 36425 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = (𝐴 / (◡ E ↾ 𝐴))) |
4 | qsresid 36460 | . . . 4 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = (𝐴 / ◡ E ) | |
5 | qsid 8572 | . . . 4 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
6 | 4, 5 | eqtri 2766 | . . 3 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = 𝐴 |
7 | 3, 6 | eqtrdi 2794 | . 2 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
8 | n0eldmqseq 36762 | . 2 ⊢ ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
9 | 7, 8 | impbii 208 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∅c0 4256 E cep 5494 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: cnvepresdmqss 36764 cnvepresdmqs 36765 |
Copyright terms: Public domain | W3C validator |