Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0el3 | Structured version Visualization version GIF version |
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
Ref | Expression |
---|---|
n0el3 | ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0el2 36030 | . . . . 5 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
2 | 1 | biimpi 219 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
3 | 2 | qseq1d 35987 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = (𝐴 / (◡ E ↾ 𝐴))) |
4 | qsresid 36022 | . . . 4 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = (𝐴 / ◡ E ) | |
5 | qsid 8373 | . . . 4 ⊢ (𝐴 / ◡ E ) = 𝐴 | |
6 | 4, 5 | eqtri 2781 | . . 3 ⊢ (𝐴 / (◡ E ↾ 𝐴)) = 𝐴 |
7 | 3, 6 | eqtrdi 2809 | . 2 ⊢ (¬ ∅ ∈ 𝐴 → (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
8 | n0eldmqseq 36324 | . 2 ⊢ ((dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴 → ¬ ∅ ∈ 𝐴) | |
9 | 7, 8 | impbii 212 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∅c0 4225 E cep 5434 ◡ccnv 5523 dom cdm 5524 ↾ cres 5526 / cqs 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-eprel 5435 df-xp 5530 df-rel 5531 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ec 8301 df-qs 8305 |
This theorem is referenced by: cnvepresdmqss 36326 cnvepresdmqs 36327 |
Copyright terms: Public domain | W3C validator |