Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0el3 Structured version   Visualization version   GIF version

Theorem n0el3 36763
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.)
Assertion
Ref Expression
n0el3 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)

Proof of Theorem n0el3
StepHypRef Expression
1 n0el2 36468 . . . . 5 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
21biimpi 215 . . . 4 (¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴) = 𝐴)
32qseq1d 36425 . . 3 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = (𝐴 / ( E ↾ 𝐴)))
4 qsresid 36460 . . . 4 (𝐴 / ( E ↾ 𝐴)) = (𝐴 / E )
5 qsid 8572 . . . 4 (𝐴 / E ) = 𝐴
64, 5eqtri 2766 . . 3 (𝐴 / ( E ↾ 𝐴)) = 𝐴
73, 6eqtrdi 2794 . 2 (¬ ∅ ∈ 𝐴 → (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
8 n0eldmqseq 36762 . 2 ((dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴 → ¬ ∅ ∈ 𝐴)
97, 8impbii 208 1 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  c0 4256   E cep 5494  ccnv 5588  dom cdm 5589  cres 5591   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504
This theorem is referenced by:  cnvepresdmqss  36764  cnvepresdmqs  36765
  Copyright terms: Public domain W3C validator