Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc2fvx Structured version   Visualization version   GIF version

Theorem cyc2fvx 33112
Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cyc2fvx (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)

Proof of Theorem cyc2fvx
StepHypRef Expression
1 cycpm3.c . 2 𝐶 = (toCyc‘𝐷)
2 cycpm3.d . 2 (𝜑𝐷𝑉)
3 cycpm3.i . . 3 (𝜑𝐼𝐷)
4 cycpm3.j . . 3 (𝜑𝐽𝐷)
53, 4s2cld 14782 . 2 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
6 cycpm3.1 . . 3 (𝜑𝐼𝐽)
73, 4, 6s2f1 32935 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
8 cycpm3.k . 2 (𝜑𝐾𝐷)
9 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
10 cycpm3.2 . . . . 5 (𝜑𝐽𝐾)
1110necomd 2984 . . . 4 (𝜑𝐾𝐽)
129, 11nelprd 4611 . . 3 (𝜑 → ¬ 𝐾 ∈ {𝐼, 𝐽})
133, 4s2rn 14874 . . 3 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
1412, 13neleqtrrd 2856 . 2 (𝜑 → ¬ 𝐾 ∈ ran ⟨“𝐼𝐽”⟩)
151, 2, 5, 7, 8, 14cycpmfv3 33093 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  {cpr 4579  ran crn 5622  cfv 6488  ⟨“cs2 14752  SymGrpcsymg 19285  toCycctocyc 33084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-hash 14242  df-word 14425  df-concat 14482  df-s1 14508  df-substr 14553  df-pfx 14583  df-csh 14700  df-s2 14759  df-tocyc 33085
This theorem is referenced by:  cyc3co2  33118
  Copyright terms: Public domain W3C validator