Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc2fvx Structured version   Visualization version   GIF version

Theorem cyc2fvx 33101
Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cyc2fvx (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)

Proof of Theorem cyc2fvx
StepHypRef Expression
1 cycpm3.c . 2 𝐶 = (toCyc‘𝐷)
2 cycpm3.d . 2 (𝜑𝐷𝑉)
3 cycpm3.i . . 3 (𝜑𝐼𝐷)
4 cycpm3.j . . 3 (𝜑𝐽𝐷)
53, 4s2cld 14778 . 2 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
6 cycpm3.1 . . 3 (𝜑𝐼𝐽)
73, 4, 6s2f1 32924 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
8 cycpm3.k . 2 (𝜑𝐾𝐷)
9 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
10 cycpm3.2 . . . . 5 (𝜑𝐽𝐾)
1110necomd 2983 . . . 4 (𝜑𝐾𝐽)
129, 11nelprd 4610 . . 3 (𝜑 → ¬ 𝐾 ∈ {𝐼, 𝐽})
133, 4s2rn 14870 . . 3 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
1412, 13neleqtrrd 2854 . 2 (𝜑 → ¬ 𝐾 ∈ ran ⟨“𝐼𝐽”⟩)
151, 2, 5, 7, 8, 14cycpmfv3 33082 1 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  {cpr 4578  ran crn 5617  cfv 6481  ⟨“cs2 14748  SymGrpcsymg 19282  toCycctocyc 33073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-csh 14696  df-s2 14755  df-tocyc 33074
This theorem is referenced by:  cyc3co2  33107
  Copyright terms: Public domain W3C validator