Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p4 Structured version   Visualization version   GIF version

Theorem aks4d1p1p4 40528
Description: Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p4.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p4.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p4.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p4.4 (𝜑 → 3 ≤ 𝑁)
aks4d1p1p4.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p4.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p4.7 𝐸 = ((2 logb 𝑁)↑4)
aks4d1p1p4.8 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
Assertion
Ref Expression
aks4d1p1p4 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p4
StepHypRef Expression
1 aks4d1p1p4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnred 12168 . . . . 5 (𝜑𝑁 ∈ ℝ)
3 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
43a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
5 2pos 12256 . . . . . . . . . 10 0 < 2
65a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
71nngt0d 12202 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
8 1red 11156 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
9 1lt2 12324 . . . . . . . . . . . . . . . . 17 1 < 2
109a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
118, 10ltned 11291 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
1211necomd 2999 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
134, 6, 2, 7, 12relogbcld 40430 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12433 . . . . . . . . . . . . . 14 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14068 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13747 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12607 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p4.3 . . . . . . . . . . . 12 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2822 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 256 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
24 0red 11158 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
25 7re 12246 . . . . . . . . . . 11 7 ∈ ℝ
2625a1i 11 . . . . . . . . . 10 (𝜑 → 7 ∈ ℝ)
27 7pos 12264 . . . . . . . . . . 11 0 < 7
2827a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 7)
29 aks4d1p1p4.4 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝑁)
302, 293lexlogpow5ineq3 40514 . . . . . . . . . . . 12 (𝜑 → 7 < ((2 logb 𝑁)↑5))
3126, 16, 30ltled 11303 . . . . . . . . . . 11 (𝜑 → 7 ≤ ((2 logb 𝑁)↑5))
32 ceilge 13750 . . . . . . . . . . . . 13 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3316, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3433, 21breqtrrd 5133 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
3526, 16, 23, 31, 34letrd 11312 . . . . . . . . . 10 (𝜑 → 7 ≤ 𝐵)
3624, 26, 23, 28, 35ltletrd 11315 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
374, 6, 23, 36, 12relogbcld 40430 . . . . . . . 8 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13703 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3924, 8readdcld 11184 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℝ)
4038zred 12607 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4140, 8readdcld 11184 . . . . . . . . 9 (𝜑 → ((⌊‘(2 logb 𝐵)) + 1) ∈ ℝ)
424, 6, 4, 6, 12relogbcld 40430 . . . . . . . . . 10 (𝜑 → (2 logb 2) ∈ ℝ)
438leidd 11721 . . . . . . . . . . 11 (𝜑 → 1 ≤ 1)
44 1cnd 11150 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
4544addid2d 11356 . . . . . . . . . . . 12 (𝜑 → (0 + 1) = 1)
464recnd 11183 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
4724, 6gtned 11290 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≠ 0)
48 logbid1 26118 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
4946, 47, 12, 48syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 2) = 1)
5049eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → 1 = (2 logb 2))
5150eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → (2 logb 2) = 1)
5245, 51breq12d 5118 . . . . . . . . . . 11 (𝜑 → ((0 + 1) ≤ (2 logb 2) ↔ 1 ≤ 1))
5343, 52mpbird 256 . . . . . . . . . 10 (𝜑 → (0 + 1) ≤ (2 logb 2))
54 5re 12240 . . . . . . . . . . . . . . 15 5 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℝ)
564, 55readdcld 11184 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ∈ ℝ)
573, 14nn0addge1i 12461 . . . . . . . . . . . . . 14 2 ≤ (2 + 5)
5857a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (2 + 5))
593recni 11169 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
60 5cn 12241 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
6159, 60addcomi 11346 . . . . . . . . . . . . . . . 16 (2 + 5) = (5 + 2)
62 5p2e7 12309 . . . . . . . . . . . . . . . 16 (5 + 2) = 7
6361, 62eqtri 2764 . . . . . . . . . . . . . . 15 (2 + 5) = 7
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 + 5) = 7)
6526leidd 11721 . . . . . . . . . . . . . 14 (𝜑 → 7 ≤ 7)
6664, 65eqbrtrd 5127 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ≤ 7)
674, 56, 26, 58, 66letrd 11312 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 7)
684, 26, 23, 67, 35letrd 11312 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
69 2z 12535 . . . . . . . . . . . . . 14 2 ∈ ℤ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℤ)
7170uzidd 12779 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘2))
72 2rp 12920 . . . . . . . . . . . . 13 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
7423, 36elrpd 12954 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
75 logbleb 26133 . . . . . . . . . . . 12 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7671, 73, 74, 75syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7768, 76mpbid 231 . . . . . . . . . 10 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
7839, 42, 37, 53, 77letrd 11312 . . . . . . . . 9 (𝜑 → (0 + 1) ≤ (2 logb 𝐵))
79 fllep1 13706 . . . . . . . . . 10 ((2 logb 𝐵) ∈ ℝ → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8037, 79syl 17 . . . . . . . . 9 (𝜑 → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8139, 37, 41, 78, 80letrd 11312 . . . . . . . 8 (𝜑 → (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8224, 40, 8leadd1d 11749 . . . . . . . 8 (𝜑 → (0 ≤ (⌊‘(2 logb 𝐵)) ↔ (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1)))
8381, 82mpbird 256 . . . . . . 7 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
8438, 83jca 512 . . . . . 6 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
85 elnn0z 12512 . . . . . 6 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
8684, 85sylibr 233 . . . . 5 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
872, 86reexpcld 14068 . . . 4 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℝ)
88 fzfid 13878 . . . . 5 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
892adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
90 elfznn 13470 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9190adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
9291nnnn0d 12473 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
9389, 92reexpcld 14068 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
94 1red 11156 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
9593, 94resubcld 11583 . . . . 5 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℝ)
9688, 95fprodrecl 15836 . . . 4 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℝ)
9787, 96remulcld 11185 . . 3 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ)
98 aks4d1p1p4.2 . . . . 5 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
9998a1i 11 . . . 4 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
10099eleq1d 2822 . . 3 (𝜑 → (𝐴 ∈ ℝ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ))
10197, 100mpbird 256 . 2 (𝜑𝐴 ∈ ℝ)
102 aks4d1p1p4.7 . . . . . . . . 9 𝐸 = ((2 logb 𝑁)↑4)
103102a1i 11 . . . . . . . 8 (𝜑𝐸 = ((2 logb 𝑁)↑4))
104103oveq2d 7373 . . . . . . 7 (𝜑 → (𝑁𝑐𝐸) = (𝑁𝑐((2 logb 𝑁)↑4)))
105 2cnd 12231 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
10673rpne0d 12962 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
107106, 12nelprd 4617 . . . . . . . . . . . 12 (𝜑 → ¬ 2 ∈ {0, 1})
108105, 107eldifd 3921 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
1092recnd 11183 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
11024, 7ltned 11291 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≠ 𝑁)
111 necom 2997 . . . . . . . . . . . . . . . 16 (0 ≠ 𝑁𝑁 ≠ 0)
112111imbi2i 335 . . . . . . . . . . . . . . 15 ((𝜑 → 0 ≠ 𝑁) ↔ (𝜑𝑁 ≠ 0))
113110, 112mpbi 229 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
114113neneqd 2948 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 = 0)
115 c0ex 11149 . . . . . . . . . . . . . 14 0 ∈ V
116115elsn2 4625 . . . . . . . . . . . . 13 (𝑁 ∈ {0} ↔ 𝑁 = 0)
117114, 116sylnibr 328 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ {0})
118109, 117eldifd 3921 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℂ ∖ {0}))
119 cxplogb 26136 . . . . . . . . . . 11 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
120108, 118, 119syl2anc 584 . . . . . . . . . 10 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
121120eqcomd 2742 . . . . . . . . 9 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
122121oveq1d 7372 . . . . . . . 8 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
123 eqidd 2737 . . . . . . . 8 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
124122, 123eqtrd 2776 . . . . . . 7 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
125104, 124eqtrd 2776 . . . . . 6 (𝜑 → (𝑁𝑐𝐸) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
126103eqcomd 2742 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑4) = 𝐸)
127 4nn0 12432 . . . . . . . . . . . . 13 4 ∈ ℕ0
128127a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ0)
12913, 128reexpcld 14068 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℝ)
130103eleq1d 2822 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ ↔ ((2 logb 𝑁)↑4) ∈ ℝ))
131129, 130mpbird 256 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
132131recnd 11183 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
133126, 132eqeltrd 2838 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℂ)
13473, 13, 133cxpmuld 26091 . . . . . . 7 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
135134eqcomd 2742 . . . . . 6 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
136125, 135eqtrd 2776 . . . . 5 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
13713recnd 11183 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℂ)
138137exp1d 14046 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑1) = (2 logb 𝑁))
139138eqcomd 2742 . . . . . . . 8 (𝜑 → (2 logb 𝑁) = ((2 logb 𝑁)↑1))
140139oveq1d 7372 . . . . . . 7 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
141 1nn0 12429 . . . . . . . . . 10 1 ∈ ℕ0
142141a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
143137, 128, 142expaddd 14053 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
144143eqcomd 2742 . . . . . . 7 (𝜑 → (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
145140, 144eqtrd 2776 . . . . . 6 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
146145oveq2d 7373 . . . . 5 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
147136, 146eqtrd 2776 . . . 4 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
148 4cn 12238 . . . . . . . 8 4 ∈ ℂ
149 ax-1cn 11109 . . . . . . . 8 1 ∈ ℂ
150 4p1e5 12299 . . . . . . . 8 (4 + 1) = 5
151148, 149, 150addcomli 11347 . . . . . . 7 (1 + 4) = 5
152151a1i 11 . . . . . 6 (𝜑 → (1 + 4) = 5)
153152oveq2d 7373 . . . . 5 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = ((2 logb 𝑁)↑5))
154153oveq2d 7373 . . . 4 (𝜑 → (2↑𝑐((2 logb 𝑁)↑(1 + 4))) = (2↑𝑐((2 logb 𝑁)↑5)))
155147, 154eqtrd 2776 . . 3 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑5)))
156 3re 12233 . . . . . 6 3 ∈ ℝ
157156a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
158 0le1 11678 . . . . . . 7 0 ≤ 1
159158a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
160 1lt3 12326 . . . . . . . 8 1 < 3
161160a1i 11 . . . . . . 7 (𝜑 → 1 < 3)
1628, 157, 161ltled 11303 . . . . . 6 (𝜑 → 1 ≤ 3)
16324, 8, 157, 159, 162letrd 11312 . . . . 5 (𝜑 → 0 ≤ 3)
16424, 157, 2, 163, 29letrd 11312 . . . 4 (𝜑 → 0 ≤ 𝑁)
1652, 164, 131recxpcld 26078 . . 3 (𝜑 → (𝑁𝑐𝐸) ∈ ℝ)
166155, 165eqeltrrd 2839 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ∈ ℝ)
16721eleq1d 2822 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ))
16818, 167mpbird 256 . . . . 5 (𝜑𝐵 ∈ ℤ)
16924, 23, 36ltled 11303 . . . . 5 (𝜑 → 0 ≤ 𝐵)
170168, 169jca 512 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
171 elnn0z 12512 . . . 4 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
172170, 171sylibr 233 . . 3 (𝜑𝐵 ∈ ℕ0)
1734, 172reexpcld 14068 . 2 (𝜑 → (2↑𝐵) ∈ ℝ)
1742, 7elrpd 12954 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
17516, 8readdcld 11184 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
17615nn0zd 12525 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℤ)
177 logb1 26119 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
17846, 47, 12, 177syl3anc 1371 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
179178, 24eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ∈ ℝ)
18024leidd 11721 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 0)
181178eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑 → 0 = (2 logb 1))
182180, 181breqtrd 5131 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 1))
1838, 157, 2, 161, 29ltletrd 11315 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 𝑁)
184 1rp 12919 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
185184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ+)
186 logblt 26134 . . . . . . . . . . . . . . . 16 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
18771, 185, 174, 186syl3anc 1371 . . . . . . . . . . . . . . 15 (𝜑 → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
188183, 187mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) < (2 logb 𝑁))
18924, 179, 13, 182, 188lelttrd 11313 . . . . . . . . . . . . 13 (𝜑 → 0 < (2 logb 𝑁))
19013, 176, 1893jca 1128 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)))
191 expgt0 14001 . . . . . . . . . . . 12 (((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)) → 0 < ((2 logb 𝑁)↑5))
192190, 191syl 17 . . . . . . . . . . 11 (𝜑 → 0 < ((2 logb 𝑁)↑5))
193 ltp1 11995 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19416, 193syl 17 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19524, 16, 175, 192, 194lttrd 11316 . . . . . . . . . 10 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
1964, 6, 175, 195, 12relogbcld 40430 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
197 aks4d1p1p4.5 . . . . . . . . . . 11 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
198197a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
199198eleq1d 2822 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ↔ (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ))
200196, 199mpbird 256 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
20113resqcld 14030 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
202 aks4d1p1p4.6 . . . . . . . . . . . 12 𝐷 = ((2 logb 𝑁)↑2)
203202a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = ((2 logb 𝑁)↑2))
204203eleq1d 2822 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ℝ ↔ ((2 logb 𝑁)↑2) ∈ ℝ))
205201, 204mpbird 256 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
206205rehalfcld 12400 . . . . . . . 8 (𝜑 → (𝐷 / 2) ∈ ℝ)
207200, 206readdcld 11184 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ∈ ℝ)
208131, 4, 106redivcld 11983 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
209207, 208readdcld 11184 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ∈ ℝ)
210174, 209rpcxpcld 26087 . . . . 5 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ+)
211210rpred 12957 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ)
2121, 98, 20, 29aks4d1p1p2 40527 . . . . 5 (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
213126oveq1d 7372 . . . . . . . 8 (𝜑 → (((2 logb 𝑁)↑4) / 2) = (𝐸 / 2))
214213oveq2d 7373 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)))
215198eqcomd 2742 . . . . . . . . . 10 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) = 𝐶)
216215oveq1d 7372 . . . . . . . . 9 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (((2 logb 𝑁)↑2) / 2)))
217203eqcomd 2742 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑2) = 𝐷)
218217oveq1d 7372 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑2) / 2) = (𝐷 / 2))
219218oveq2d 7373 . . . . . . . . 9 (𝜑 → (𝐶 + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
220216, 219eqtrd 2776 . . . . . . . 8 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
221220oveq1d 7372 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
222214, 221eqtrd 2776 . . . . . 6 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
223222oveq2d 7373 . . . . 5 (𝜑 → (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))) = (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
224212, 223breqtrd 5131 . . . 4 (𝜑𝐴 < (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
225200recnd 11183 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
226225, 105, 106divcan3d 11936 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐶) / 2) = 𝐶)
227226eqcomd 2742 . . . . . . . . . 10 (𝜑𝐶 = ((2 · 𝐶) / 2))
228227oveq1d 7372 . . . . . . . . 9 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
2294, 200remulcld 11185 . . . . . . . . . . . 12 (𝜑 → (2 · 𝐶) ∈ ℝ)
230229recnd 11183 . . . . . . . . . . 11 (𝜑 → (2 · 𝐶) ∈ ℂ)
231205recnd 11183 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
232230, 231, 46, 106divdird 11969 . . . . . . . . . 10 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
233232eqcomd 2742 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) / 2) + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
234228, 233eqtrd 2776 . . . . . . . 8 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
235 aks4d1p1p4.8 . . . . . . . . 9 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
236229, 205readdcld 11184 . . . . . . . . . 10 (𝜑 → ((2 · 𝐶) + 𝐷) ∈ ℝ)
237236, 131, 73lediv1d 13003 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) + 𝐷) ≤ 𝐸 ↔ (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2)))
238235, 237mpbid 231 . . . . . . . 8 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2))
239234, 238eqbrtrd 5127 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ≤ (𝐸 / 2))
240207, 208, 208, 239leadd1dd 11769 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ ((𝐸 / 2) + (𝐸 / 2)))
2411322halvesd 12399 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
242240, 241breqtrd 5131 . . . . 5 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸)
2432, 183, 209, 131cxpled 26075 . . . . 5 (𝜑 → (((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸 ↔ (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸)))
244242, 243mpbid 231 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸))
245101, 211, 165, 224, 244ltletrd 11315 . . 3 (𝜑𝐴 < (𝑁𝑐𝐸))
246245, 155breqtrd 5131 . 2 (𝜑𝐴 < (2↑𝑐((2 logb 𝑁)↑5)))
247 1le2 12362 . . . . 5 1 ≤ 2
248247a1i 11 . . . 4 (𝜑 → 1 ≤ 2)
249172nn0red 12474 . . . 4 (𝜑𝐵 ∈ ℝ)
25021eqcomd 2742 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
25133, 250breqtrd 5131 . . . 4 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
2524, 248, 16, 249, 251cxplead 26076 . . 3 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝑐𝐵))
253 cxpexp 26023 . . . 4 ((2 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (2↑𝑐𝐵) = (2↑𝐵))
254105, 172, 253syl2anc 584 . . 3 (𝜑 → (2↑𝑐𝐵) = (2↑𝐵))
255252, 254breqtrd 5131 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝐵))
256101, 166, 173, 246, 255ltletrd 11315 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907  {csn 4586  {cpr 4588   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  5c5 12211  7c7 12213  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  cfl 13695  cceil 13696  cexp 13967  cprod 15788  𝑐ccxp 25911   logb clogb 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-ceil 13698  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115
This theorem is referenced by:  aks4d1p1p5  40532
  Copyright terms: Public domain W3C validator