Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p4 Structured version   Visualization version   GIF version

Theorem aks4d1p1p4 42059
Description: Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p4.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p4.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p4.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p4.4 (𝜑 → 3 ≤ 𝑁)
aks4d1p1p4.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p4.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p4.7 𝐸 = ((2 logb 𝑁)↑4)
aks4d1p1p4.8 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
Assertion
Ref Expression
aks4d1p1p4 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p4
StepHypRef Expression
1 aks4d1p1p4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnred 12201 . . . . 5 (𝜑𝑁 ∈ ℝ)
3 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
43a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
5 2pos 12289 . . . . . . . . . 10 0 < 2
65a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
71nngt0d 12235 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
8 1red 11175 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
9 1lt2 12352 . . . . . . . . . . . . . . . . 17 1 < 2
109a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
118, 10ltned 11310 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
1211necomd 2980 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
134, 6, 2, 7, 12relogbcld 41961 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12462 . . . . . . . . . . . . . 14 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14128 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13804 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12638 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p4.3 . . . . . . . . . . . 12 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 257 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
24 0red 11177 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
25 7re 12279 . . . . . . . . . . 11 7 ∈ ℝ
2625a1i 11 . . . . . . . . . 10 (𝜑 → 7 ∈ ℝ)
27 7pos 12297 . . . . . . . . . . 11 0 < 7
2827a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 7)
29 aks4d1p1p4.4 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝑁)
302, 293lexlogpow5ineq3 42045 . . . . . . . . . . . 12 (𝜑 → 7 < ((2 logb 𝑁)↑5))
3126, 16, 30ltled 11322 . . . . . . . . . . 11 (𝜑 → 7 ≤ ((2 logb 𝑁)↑5))
32 ceilge 13807 . . . . . . . . . . . . 13 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3316, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3433, 21breqtrrd 5135 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
3526, 16, 23, 31, 34letrd 11331 . . . . . . . . . 10 (𝜑 → 7 ≤ 𝐵)
3624, 26, 23, 28, 35ltletrd 11334 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
374, 6, 23, 36, 12relogbcld 41961 . . . . . . . 8 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13760 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3924, 8readdcld 11203 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℝ)
4038zred 12638 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4140, 8readdcld 11203 . . . . . . . . 9 (𝜑 → ((⌊‘(2 logb 𝐵)) + 1) ∈ ℝ)
424, 6, 4, 6, 12relogbcld 41961 . . . . . . . . . 10 (𝜑 → (2 logb 2) ∈ ℝ)
438leidd 11744 . . . . . . . . . . 11 (𝜑 → 1 ≤ 1)
44 1cnd 11169 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
4544addlidd 11375 . . . . . . . . . . . 12 (𝜑 → (0 + 1) = 1)
464recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
4724, 6gtned 11309 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≠ 0)
48 logbid1 26678 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
4946, 47, 12, 48syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 2) = 1)
5049eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → 1 = (2 logb 2))
5150eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → (2 logb 2) = 1)
5245, 51breq12d 5120 . . . . . . . . . . 11 (𝜑 → ((0 + 1) ≤ (2 logb 2) ↔ 1 ≤ 1))
5343, 52mpbird 257 . . . . . . . . . 10 (𝜑 → (0 + 1) ≤ (2 logb 2))
54 5re 12273 . . . . . . . . . . . . . . 15 5 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℝ)
564, 55readdcld 11203 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ∈ ℝ)
573, 14nn0addge1i 12490 . . . . . . . . . . . . . 14 2 ≤ (2 + 5)
5857a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (2 + 5))
593recni 11188 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
60 5cn 12274 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
6159, 60addcomi 11365 . . . . . . . . . . . . . . . 16 (2 + 5) = (5 + 2)
62 5p2e7 12337 . . . . . . . . . . . . . . . 16 (5 + 2) = 7
6361, 62eqtri 2752 . . . . . . . . . . . . . . 15 (2 + 5) = 7
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 + 5) = 7)
6526leidd 11744 . . . . . . . . . . . . . 14 (𝜑 → 7 ≤ 7)
6664, 65eqbrtrd 5129 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ≤ 7)
674, 56, 26, 58, 66letrd 11331 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 7)
684, 26, 23, 67, 35letrd 11331 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
69 2z 12565 . . . . . . . . . . . . . 14 2 ∈ ℤ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℤ)
7170uzidd 12809 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘2))
72 2rp 12956 . . . . . . . . . . . . 13 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
7423, 36elrpd 12992 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
75 logbleb 26693 . . . . . . . . . . . 12 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7671, 73, 74, 75syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7768, 76mpbid 232 . . . . . . . . . 10 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
7839, 42, 37, 53, 77letrd 11331 . . . . . . . . 9 (𝜑 → (0 + 1) ≤ (2 logb 𝐵))
79 fllep1 13763 . . . . . . . . . 10 ((2 logb 𝐵) ∈ ℝ → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8037, 79syl 17 . . . . . . . . 9 (𝜑 → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8139, 37, 41, 78, 80letrd 11331 . . . . . . . 8 (𝜑 → (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8224, 40, 8leadd1d 11772 . . . . . . . 8 (𝜑 → (0 ≤ (⌊‘(2 logb 𝐵)) ↔ (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1)))
8381, 82mpbird 257 . . . . . . 7 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
8438, 83jca 511 . . . . . 6 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
85 elnn0z 12542 . . . . . 6 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
8684, 85sylibr 234 . . . . 5 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
872, 86reexpcld 14128 . . . 4 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℝ)
88 fzfid 13938 . . . . 5 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
892adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
90 elfznn 13514 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9190adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
9291nnnn0d 12503 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
9389, 92reexpcld 14128 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
94 1red 11175 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
9593, 94resubcld 11606 . . . . 5 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℝ)
9688, 95fprodrecl 15919 . . . 4 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℝ)
9787, 96remulcld 11204 . . 3 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ)
98 aks4d1p1p4.2 . . . . 5 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
9998a1i 11 . . . 4 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
10099eleq1d 2813 . . 3 (𝜑 → (𝐴 ∈ ℝ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ))
10197, 100mpbird 257 . 2 (𝜑𝐴 ∈ ℝ)
102 aks4d1p1p4.7 . . . . . . . . 9 𝐸 = ((2 logb 𝑁)↑4)
103102a1i 11 . . . . . . . 8 (𝜑𝐸 = ((2 logb 𝑁)↑4))
104103oveq2d 7403 . . . . . . 7 (𝜑 → (𝑁𝑐𝐸) = (𝑁𝑐((2 logb 𝑁)↑4)))
105 2cnd 12264 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
10673rpne0d 13000 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
107106, 12nelprd 4621 . . . . . . . . . . . 12 (𝜑 → ¬ 2 ∈ {0, 1})
108105, 107eldifd 3925 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
1092recnd 11202 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
11024, 7ltned 11310 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≠ 𝑁)
111 necom 2978 . . . . . . . . . . . . . . . 16 (0 ≠ 𝑁𝑁 ≠ 0)
112111imbi2i 336 . . . . . . . . . . . . . . 15 ((𝜑 → 0 ≠ 𝑁) ↔ (𝜑𝑁 ≠ 0))
113110, 112mpbi 230 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
114113neneqd 2930 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 = 0)
115 c0ex 11168 . . . . . . . . . . . . . 14 0 ∈ V
116115elsn2 4629 . . . . . . . . . . . . 13 (𝑁 ∈ {0} ↔ 𝑁 = 0)
117114, 116sylnibr 329 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ {0})
118109, 117eldifd 3925 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℂ ∖ {0}))
119 cxplogb 26696 . . . . . . . . . . 11 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
120108, 118, 119syl2anc 584 . . . . . . . . . 10 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
121120eqcomd 2735 . . . . . . . . 9 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
122121oveq1d 7402 . . . . . . . 8 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
123 eqidd 2730 . . . . . . . 8 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
124122, 123eqtrd 2764 . . . . . . 7 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
125104, 124eqtrd 2764 . . . . . 6 (𝜑 → (𝑁𝑐𝐸) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
126103eqcomd 2735 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑4) = 𝐸)
127 4nn0 12461 . . . . . . . . . . . . 13 4 ∈ ℕ0
128127a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ0)
12913, 128reexpcld 14128 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℝ)
130103eleq1d 2813 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ ↔ ((2 logb 𝑁)↑4) ∈ ℝ))
131129, 130mpbird 257 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
132131recnd 11202 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
133126, 132eqeltrd 2828 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℂ)
13473, 13, 133cxpmuld 26646 . . . . . . 7 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
135134eqcomd 2735 . . . . . 6 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
136125, 135eqtrd 2764 . . . . 5 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
13713recnd 11202 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℂ)
138137exp1d 14106 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑1) = (2 logb 𝑁))
139138eqcomd 2735 . . . . . . . 8 (𝜑 → (2 logb 𝑁) = ((2 logb 𝑁)↑1))
140139oveq1d 7402 . . . . . . 7 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
141 1nn0 12458 . . . . . . . . . 10 1 ∈ ℕ0
142141a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
143137, 128, 142expaddd 14113 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
144143eqcomd 2735 . . . . . . 7 (𝜑 → (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
145140, 144eqtrd 2764 . . . . . 6 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
146145oveq2d 7403 . . . . 5 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
147136, 146eqtrd 2764 . . . 4 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
148 4cn 12271 . . . . . . . 8 4 ∈ ℂ
149 ax-1cn 11126 . . . . . . . 8 1 ∈ ℂ
150 4p1e5 12327 . . . . . . . 8 (4 + 1) = 5
151148, 149, 150addcomli 11366 . . . . . . 7 (1 + 4) = 5
152151a1i 11 . . . . . 6 (𝜑 → (1 + 4) = 5)
153152oveq2d 7403 . . . . 5 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = ((2 logb 𝑁)↑5))
154153oveq2d 7403 . . . 4 (𝜑 → (2↑𝑐((2 logb 𝑁)↑(1 + 4))) = (2↑𝑐((2 logb 𝑁)↑5)))
155147, 154eqtrd 2764 . . 3 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑5)))
156 3re 12266 . . . . . 6 3 ∈ ℝ
157156a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
158 0le1 11701 . . . . . . 7 0 ≤ 1
159158a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
160 1lt3 12354 . . . . . . . 8 1 < 3
161160a1i 11 . . . . . . 7 (𝜑 → 1 < 3)
1628, 157, 161ltled 11322 . . . . . 6 (𝜑 → 1 ≤ 3)
16324, 8, 157, 159, 162letrd 11331 . . . . 5 (𝜑 → 0 ≤ 3)
16424, 157, 2, 163, 29letrd 11331 . . . 4 (𝜑 → 0 ≤ 𝑁)
1652, 164, 131recxpcld 26632 . . 3 (𝜑 → (𝑁𝑐𝐸) ∈ ℝ)
166155, 165eqeltrrd 2829 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ∈ ℝ)
16721eleq1d 2813 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ))
16818, 167mpbird 257 . . . . 5 (𝜑𝐵 ∈ ℤ)
16924, 23, 36ltled 11322 . . . . 5 (𝜑 → 0 ≤ 𝐵)
170168, 169jca 511 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
171 elnn0z 12542 . . . 4 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
172170, 171sylibr 234 . . 3 (𝜑𝐵 ∈ ℕ0)
1734, 172reexpcld 14128 . 2 (𝜑 → (2↑𝐵) ∈ ℝ)
1742, 7elrpd 12992 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
17516, 8readdcld 11203 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
17615nn0zd 12555 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℤ)
177 logb1 26679 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
17846, 47, 12, 177syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
179178, 24eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ∈ ℝ)
18024leidd 11744 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 0)
181178eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 0 = (2 logb 1))
182180, 181breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 1))
1838, 157, 2, 161, 29ltletrd 11334 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 𝑁)
184 1rp 12955 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
185184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ+)
186 logblt 26694 . . . . . . . . . . . . . . . 16 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
18771, 185, 174, 186syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
188183, 187mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) < (2 logb 𝑁))
18924, 179, 13, 182, 188lelttrd 11332 . . . . . . . . . . . . 13 (𝜑 → 0 < (2 logb 𝑁))
19013, 176, 1893jca 1128 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)))
191 expgt0 14060 . . . . . . . . . . . 12 (((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)) → 0 < ((2 logb 𝑁)↑5))
192190, 191syl 17 . . . . . . . . . . 11 (𝜑 → 0 < ((2 logb 𝑁)↑5))
193 ltp1 12022 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19416, 193syl 17 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19524, 16, 175, 192, 194lttrd 11335 . . . . . . . . . 10 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
1964, 6, 175, 195, 12relogbcld 41961 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
197 aks4d1p1p4.5 . . . . . . . . . . 11 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
198197a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
199198eleq1d 2813 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ↔ (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ))
200196, 199mpbird 257 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
20113resqcld 14090 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
202 aks4d1p1p4.6 . . . . . . . . . . . 12 𝐷 = ((2 logb 𝑁)↑2)
203202a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = ((2 logb 𝑁)↑2))
204203eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ℝ ↔ ((2 logb 𝑁)↑2) ∈ ℝ))
205201, 204mpbird 257 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
206205rehalfcld 12429 . . . . . . . 8 (𝜑 → (𝐷 / 2) ∈ ℝ)
207200, 206readdcld 11203 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ∈ ℝ)
208131, 4, 106redivcld 12010 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
209207, 208readdcld 11203 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ∈ ℝ)
210174, 209rpcxpcld 26642 . . . . 5 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ+)
211210rpred 12995 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ)
2121, 98, 20, 29aks4d1p1p2 42058 . . . . 5 (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
213126oveq1d 7402 . . . . . . . 8 (𝜑 → (((2 logb 𝑁)↑4) / 2) = (𝐸 / 2))
214213oveq2d 7403 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)))
215198eqcomd 2735 . . . . . . . . . 10 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) = 𝐶)
216215oveq1d 7402 . . . . . . . . 9 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (((2 logb 𝑁)↑2) / 2)))
217203eqcomd 2735 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑2) = 𝐷)
218217oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑2) / 2) = (𝐷 / 2))
219218oveq2d 7403 . . . . . . . . 9 (𝜑 → (𝐶 + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
220216, 219eqtrd 2764 . . . . . . . 8 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
221220oveq1d 7402 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
222214, 221eqtrd 2764 . . . . . 6 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
223222oveq2d 7403 . . . . 5 (𝜑 → (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))) = (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
224212, 223breqtrd 5133 . . . 4 (𝜑𝐴 < (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
225200recnd 11202 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
226225, 105, 106divcan3d 11963 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐶) / 2) = 𝐶)
227226eqcomd 2735 . . . . . . . . . 10 (𝜑𝐶 = ((2 · 𝐶) / 2))
228227oveq1d 7402 . . . . . . . . 9 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
2294, 200remulcld 11204 . . . . . . . . . . . 12 (𝜑 → (2 · 𝐶) ∈ ℝ)
230229recnd 11202 . . . . . . . . . . 11 (𝜑 → (2 · 𝐶) ∈ ℂ)
231205recnd 11202 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
232230, 231, 46, 106divdird 11996 . . . . . . . . . 10 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
233232eqcomd 2735 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) / 2) + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
234228, 233eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
235 aks4d1p1p4.8 . . . . . . . . 9 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
236229, 205readdcld 11203 . . . . . . . . . 10 (𝜑 → ((2 · 𝐶) + 𝐷) ∈ ℝ)
237236, 131, 73lediv1d 13041 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) + 𝐷) ≤ 𝐸 ↔ (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2)))
238235, 237mpbid 232 . . . . . . . 8 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2))
239234, 238eqbrtrd 5129 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ≤ (𝐸 / 2))
240207, 208, 208, 239leadd1dd 11792 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ ((𝐸 / 2) + (𝐸 / 2)))
2411322halvesd 12428 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
242240, 241breqtrd 5133 . . . . 5 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸)
2432, 183, 209, 131cxpled 26629 . . . . 5 (𝜑 → (((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸 ↔ (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸)))
244242, 243mpbid 232 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸))
245101, 211, 165, 224, 244ltletrd 11334 . . 3 (𝜑𝐴 < (𝑁𝑐𝐸))
246245, 155breqtrd 5133 . 2 (𝜑𝐴 < (2↑𝑐((2 logb 𝑁)↑5)))
247 1le2 12390 . . . . 5 1 ≤ 2
248247a1i 11 . . . 4 (𝜑 → 1 ≤ 2)
249172nn0red 12504 . . . 4 (𝜑𝐵 ∈ ℝ)
25021eqcomd 2735 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
25133, 250breqtrd 5133 . . . 4 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
2524, 248, 16, 249, 251cxplead 26630 . . 3 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝑐𝐵))
253 cxpexp 26577 . . . 4 ((2 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (2↑𝑐𝐵) = (2↑𝐵))
254105, 172, 253syl2anc 584 . . 3 (𝜑 → (2↑𝑐𝐵) = (2↑𝐵))
255252, 254breqtrd 5133 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝐵))
256101, 166, 173, 246, 255ltletrd 11334 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  7c7 12246  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cfl 13752  cceil 13753  cexp 14026  cprod 15869  𝑐ccxp 26464   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  aks4d1p1p5  42063
  Copyright terms: Public domain W3C validator