Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p4 Structured version   Visualization version   GIF version

Theorem aks4d1p1p4 42053
Description: Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p4.1 (𝜑𝑁 ∈ ℕ)
aks4d1p1p4.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1p4.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p1p4.4 (𝜑 → 3 ≤ 𝑁)
aks4d1p1p4.5 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
aks4d1p1p4.6 𝐷 = ((2 logb 𝑁)↑2)
aks4d1p1p4.7 𝐸 = ((2 logb 𝑁)↑4)
aks4d1p1p4.8 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
Assertion
Ref Expression
aks4d1p1p4 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝐸(𝑘)

Proof of Theorem aks4d1p1p4
StepHypRef Expression
1 aks4d1p1p4.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnred 12179 . . . . 5 (𝜑𝑁 ∈ ℝ)
3 2re 12238 . . . . . . . . . 10 2 ∈ ℝ
43a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
5 2pos 12267 . . . . . . . . . 10 0 < 2
65a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
71nngt0d 12213 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
8 1red 11153 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
9 1lt2 12330 . . . . . . . . . . . . . . . . 17 1 < 2
109a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
118, 10ltned 11288 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
1211necomd 2980 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
134, 6, 2, 7, 12relogbcld 41955 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
14 5nn0 12440 . . . . . . . . . . . . . 14 5 ∈ ℕ0
1514a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
1613, 15reexpcld 14106 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
17 ceilcl 13782 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
1918zred 12616 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
20 aks4d1p1p4.3 . . . . . . . . . . . 12 𝐵 = (⌈‘((2 logb 𝑁)↑5))
2120a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
2221eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ))
2319, 22mpbird 257 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
24 0red 11155 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
25 7re 12257 . . . . . . . . . . 11 7 ∈ ℝ
2625a1i 11 . . . . . . . . . 10 (𝜑 → 7 ∈ ℝ)
27 7pos 12275 . . . . . . . . . . 11 0 < 7
2827a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 7)
29 aks4d1p1p4.4 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝑁)
302, 293lexlogpow5ineq3 42039 . . . . . . . . . . . 12 (𝜑 → 7 < ((2 logb 𝑁)↑5))
3126, 16, 30ltled 11300 . . . . . . . . . . 11 (𝜑 → 7 ≤ ((2 logb 𝑁)↑5))
32 ceilge 13785 . . . . . . . . . . . . 13 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3316, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
3433, 21breqtrrd 5130 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
3526, 16, 23, 31, 34letrd 11309 . . . . . . . . . 10 (𝜑 → 7 ≤ 𝐵)
3624, 26, 23, 28, 35ltletrd 11312 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
374, 6, 23, 36, 12relogbcld 41955 . . . . . . . 8 (𝜑 → (2 logb 𝐵) ∈ ℝ)
3837flcld 13738 . . . . . . 7 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
3924, 8readdcld 11181 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℝ)
4038zred 12616 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℝ)
4140, 8readdcld 11181 . . . . . . . . 9 (𝜑 → ((⌊‘(2 logb 𝐵)) + 1) ∈ ℝ)
424, 6, 4, 6, 12relogbcld 41955 . . . . . . . . . 10 (𝜑 → (2 logb 2) ∈ ℝ)
438leidd 11722 . . . . . . . . . . 11 (𝜑 → 1 ≤ 1)
44 1cnd 11147 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
4544addlidd 11353 . . . . . . . . . . . 12 (𝜑 → (0 + 1) = 1)
464recnd 11180 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
4724, 6gtned 11287 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≠ 0)
48 logbid1 26712 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
4946, 47, 12, 48syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 2) = 1)
5049eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → 1 = (2 logb 2))
5150eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → (2 logb 2) = 1)
5245, 51breq12d 5115 . . . . . . . . . . 11 (𝜑 → ((0 + 1) ≤ (2 logb 2) ↔ 1 ≤ 1))
5343, 52mpbird 257 . . . . . . . . . 10 (𝜑 → (0 + 1) ≤ (2 logb 2))
54 5re 12251 . . . . . . . . . . . . . . 15 5 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 5 ∈ ℝ)
564, 55readdcld 11181 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ∈ ℝ)
573, 14nn0addge1i 12468 . . . . . . . . . . . . . 14 2 ≤ (2 + 5)
5857a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (2 + 5))
593recni 11166 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
60 5cn 12252 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
6159, 60addcomi 11343 . . . . . . . . . . . . . . . 16 (2 + 5) = (5 + 2)
62 5p2e7 12315 . . . . . . . . . . . . . . . 16 (5 + 2) = 7
6361, 62eqtri 2752 . . . . . . . . . . . . . . 15 (2 + 5) = 7
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (2 + 5) = 7)
6526leidd 11722 . . . . . . . . . . . . . 14 (𝜑 → 7 ≤ 7)
6664, 65eqbrtrd 5124 . . . . . . . . . . . . 13 (𝜑 → (2 + 5) ≤ 7)
674, 56, 26, 58, 66letrd 11309 . . . . . . . . . . . 12 (𝜑 → 2 ≤ 7)
684, 26, 23, 67, 35letrd 11309 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝐵)
69 2z 12543 . . . . . . . . . . . . . 14 2 ∈ ℤ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℤ)
7170uzidd 12787 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘2))
72 2rp 12934 . . . . . . . . . . . . 13 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
7423, 36elrpd 12970 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
75 logbleb 26727 . . . . . . . . . . . 12 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7671, 73, 74, 75syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2 logb 𝐵)))
7768, 76mpbid 232 . . . . . . . . . 10 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
7839, 42, 37, 53, 77letrd 11309 . . . . . . . . 9 (𝜑 → (0 + 1) ≤ (2 logb 𝐵))
79 fllep1 13741 . . . . . . . . . 10 ((2 logb 𝐵) ∈ ℝ → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8037, 79syl 17 . . . . . . . . 9 (𝜑 → (2 logb 𝐵) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8139, 37, 41, 78, 80letrd 11309 . . . . . . . 8 (𝜑 → (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1))
8224, 40, 8leadd1d 11750 . . . . . . . 8 (𝜑 → (0 ≤ (⌊‘(2 logb 𝐵)) ↔ (0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1)))
8381, 82mpbird 257 . . . . . . 7 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
8438, 83jca 511 . . . . . 6 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
85 elnn0z 12520 . . . . . 6 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
8684, 85sylibr 234 . . . . 5 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
872, 86reexpcld 14106 . . . 4 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℝ)
88 fzfid 13916 . . . . 5 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
892adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
90 elfznn 13492 . . . . . . . . 9 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9190adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
9291nnnn0d 12481 . . . . . . 7 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
9389, 92reexpcld 14106 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
94 1red 11153 . . . . . 6 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
9593, 94resubcld 11584 . . . . 5 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℝ)
9688, 95fprodrecl 15896 . . . 4 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℝ)
9787, 96remulcld 11182 . . 3 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ)
98 aks4d1p1p4.2 . . . . 5 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
9998a1i 11 . . . 4 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
10099eleq1d 2813 . . 3 (𝜑 → (𝐴 ∈ ℝ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℝ))
10197, 100mpbird 257 . 2 (𝜑𝐴 ∈ ℝ)
102 aks4d1p1p4.7 . . . . . . . . 9 𝐸 = ((2 logb 𝑁)↑4)
103102a1i 11 . . . . . . . 8 (𝜑𝐸 = ((2 logb 𝑁)↑4))
104103oveq2d 7385 . . . . . . 7 (𝜑 → (𝑁𝑐𝐸) = (𝑁𝑐((2 logb 𝑁)↑4)))
105 2cnd 12242 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
10673rpne0d 12978 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
107106, 12nelprd 4617 . . . . . . . . . . . 12 (𝜑 → ¬ 2 ∈ {0, 1})
108105, 107eldifd 3922 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0, 1}))
1092recnd 11180 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
11024, 7ltned 11288 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≠ 𝑁)
111 necom 2978 . . . . . . . . . . . . . . . 16 (0 ≠ 𝑁𝑁 ≠ 0)
112111imbi2i 336 . . . . . . . . . . . . . . 15 ((𝜑 → 0 ≠ 𝑁) ↔ (𝜑𝑁 ≠ 0))
113110, 112mpbi 230 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
114113neneqd 2930 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 = 0)
115 c0ex 11146 . . . . . . . . . . . . . 14 0 ∈ V
116115elsn2 4625 . . . . . . . . . . . . 13 (𝑁 ∈ {0} ↔ 𝑁 = 0)
117114, 116sylnibr 329 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ {0})
118109, 117eldifd 3922 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℂ ∖ {0}))
119 cxplogb 26730 . . . . . . . . . . 11 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) → (2↑𝑐(2 logb 𝑁)) = 𝑁)
120108, 118, 119syl2anc 584 . . . . . . . . . 10 (𝜑 → (2↑𝑐(2 logb 𝑁)) = 𝑁)
121120eqcomd 2735 . . . . . . . . 9 (𝜑𝑁 = (2↑𝑐(2 logb 𝑁)))
122121oveq1d 7384 . . . . . . . 8 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
123 eqidd 2730 . . . . . . . 8 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
124122, 123eqtrd 2764 . . . . . . 7 (𝜑 → (𝑁𝑐((2 logb 𝑁)↑4)) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
125104, 124eqtrd 2764 . . . . . 6 (𝜑 → (𝑁𝑐𝐸) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
126103eqcomd 2735 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑4) = 𝐸)
127 4nn0 12439 . . . . . . . . . . . . 13 4 ∈ ℕ0
128127a1i 11 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℕ0)
12913, 128reexpcld 14106 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℝ)
130103eleq1d 2813 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ ↔ ((2 logb 𝑁)↑4) ∈ ℝ))
131129, 130mpbird 257 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
132131recnd 11180 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
133126, 132eqeltrd 2828 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑4) ∈ ℂ)
13473, 13, 133cxpmuld 26680 . . . . . . 7 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)))
135134eqcomd 2735 . . . . . 6 (𝜑 → ((2↑𝑐(2 logb 𝑁))↑𝑐((2 logb 𝑁)↑4)) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
136125, 135eqtrd 2764 . . . . 5 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))))
13713recnd 11180 . . . . . . . . . 10 (𝜑 → (2 logb 𝑁) ∈ ℂ)
138137exp1d 14084 . . . . . . . . 9 (𝜑 → ((2 logb 𝑁)↑1) = (2 logb 𝑁))
139138eqcomd 2735 . . . . . . . 8 (𝜑 → (2 logb 𝑁) = ((2 logb 𝑁)↑1))
140139oveq1d 7384 . . . . . . 7 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
141 1nn0 12436 . . . . . . . . . 10 1 ∈ ℕ0
142141a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
143137, 128, 142expaddd 14091 . . . . . . . 8 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)))
144143eqcomd 2735 . . . . . . 7 (𝜑 → (((2 logb 𝑁)↑1) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
145140, 144eqtrd 2764 . . . . . 6 (𝜑 → ((2 logb 𝑁) · ((2 logb 𝑁)↑4)) = ((2 logb 𝑁)↑(1 + 4)))
146145oveq2d 7385 . . . . 5 (𝜑 → (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
147136, 146eqtrd 2764 . . . 4 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑(1 + 4))))
148 4cn 12249 . . . . . . . 8 4 ∈ ℂ
149 ax-1cn 11104 . . . . . . . 8 1 ∈ ℂ
150 4p1e5 12305 . . . . . . . 8 (4 + 1) = 5
151148, 149, 150addcomli 11344 . . . . . . 7 (1 + 4) = 5
152151a1i 11 . . . . . 6 (𝜑 → (1 + 4) = 5)
153152oveq2d 7385 . . . . 5 (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = ((2 logb 𝑁)↑5))
154153oveq2d 7385 . . . 4 (𝜑 → (2↑𝑐((2 logb 𝑁)↑(1 + 4))) = (2↑𝑐((2 logb 𝑁)↑5)))
155147, 154eqtrd 2764 . . 3 (𝜑 → (𝑁𝑐𝐸) = (2↑𝑐((2 logb 𝑁)↑5)))
156 3re 12244 . . . . . 6 3 ∈ ℝ
157156a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
158 0le1 11679 . . . . . . 7 0 ≤ 1
159158a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
160 1lt3 12332 . . . . . . . 8 1 < 3
161160a1i 11 . . . . . . 7 (𝜑 → 1 < 3)
1628, 157, 161ltled 11300 . . . . . 6 (𝜑 → 1 ≤ 3)
16324, 8, 157, 159, 162letrd 11309 . . . . 5 (𝜑 → 0 ≤ 3)
16424, 157, 2, 163, 29letrd 11309 . . . 4 (𝜑 → 0 ≤ 𝑁)
1652, 164, 131recxpcld 26666 . . 3 (𝜑 → (𝑁𝑐𝐸) ∈ ℝ)
166155, 165eqeltrrd 2829 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ∈ ℝ)
16721eleq1d 2813 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ↔ (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ))
16818, 167mpbird 257 . . . . 5 (𝜑𝐵 ∈ ℤ)
16924, 23, 36ltled 11300 . . . . 5 (𝜑 → 0 ≤ 𝐵)
170168, 169jca 511 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
171 elnn0z 12520 . . . 4 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
172170, 171sylibr 234 . . 3 (𝜑𝐵 ∈ ℕ0)
1734, 172reexpcld 14106 . 2 (𝜑 → (2↑𝐵) ∈ ℝ)
1742, 7elrpd 12970 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
17516, 8readdcld 11181 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈ ℝ)
17615nn0zd 12533 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℤ)
177 logb1 26713 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
17846, 47, 12, 177syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
179178, 24eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ∈ ℝ)
18024leidd 11722 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 0)
181178eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 0 = (2 logb 1))
182180, 181breqtrd 5128 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 1))
1838, 157, 2, 161, 29ltletrd 11312 . . . . . . . . . . . . . . 15 (𝜑 → 1 < 𝑁)
184 1rp 12933 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
185184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ+)
186 logblt 26728 . . . . . . . . . . . . . . . 16 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
18771, 185, 174, 186syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (1 < 𝑁 ↔ (2 logb 1) < (2 logb 𝑁)))
188183, 187mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) < (2 logb 𝑁))
18924, 179, 13, 182, 188lelttrd 11310 . . . . . . . . . . . . 13 (𝜑 → 0 < (2 logb 𝑁))
19013, 176, 1893jca 1128 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)))
191 expgt0 14038 . . . . . . . . . . . 12 (((2 logb 𝑁) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)) → 0 < ((2 logb 𝑁)↑5))
192190, 191syl 17 . . . . . . . . . . 11 (𝜑 → 0 < ((2 logb 𝑁)↑5))
193 ltp1 12000 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19416, 193syl 17 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1))
19524, 16, 175, 192, 194lttrd 11313 . . . . . . . . . 10 (𝜑 → 0 < (((2 logb 𝑁)↑5) + 1))
1964, 6, 175, 195, 12relogbcld 41955 . . . . . . . . 9 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ)
197 aks4d1p1p4.5 . . . . . . . . . . 11 𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1))
198197a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (2 logb (((2 logb 𝑁)↑5) + 1)))
199198eleq1d 2813 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ↔ (2 logb (((2 logb 𝑁)↑5) + 1)) ∈ ℝ))
200196, 199mpbird 257 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
20113resqcld 14068 . . . . . . . . . 10 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
202 aks4d1p1p4.6 . . . . . . . . . . . 12 𝐷 = ((2 logb 𝑁)↑2)
203202a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = ((2 logb 𝑁)↑2))
204203eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ℝ ↔ ((2 logb 𝑁)↑2) ∈ ℝ))
205201, 204mpbird 257 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
206205rehalfcld 12407 . . . . . . . 8 (𝜑 → (𝐷 / 2) ∈ ℝ)
207200, 206readdcld 11181 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ∈ ℝ)
208131, 4, 106redivcld 11988 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
209207, 208readdcld 11181 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ∈ ℝ)
210174, 209rpcxpcld 26676 . . . . 5 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ+)
211210rpred 12973 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ)
2121, 98, 20, 29aks4d1p1p2 42052 . . . . 5 (𝜑𝐴 < (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))))
213126oveq1d 7384 . . . . . . . 8 (𝜑 → (((2 logb 𝑁)↑4) / 2) = (𝐸 / 2))
214213oveq2d 7385 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)))
215198eqcomd 2735 . . . . . . . . . 10 (𝜑 → (2 logb (((2 logb 𝑁)↑5) + 1)) = 𝐶)
216215oveq1d 7384 . . . . . . . . 9 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (((2 logb 𝑁)↑2) / 2)))
217203eqcomd 2735 . . . . . . . . . . 11 (𝜑 → ((2 logb 𝑁)↑2) = 𝐷)
218217oveq1d 7384 . . . . . . . . . 10 (𝜑 → (((2 logb 𝑁)↑2) / 2) = (𝐷 / 2))
219218oveq2d 7385 . . . . . . . . 9 (𝜑 → (𝐶 + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
220216, 219eqtrd 2764 . . . . . . . 8 (𝜑 → ((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2)))
221220oveq1d 7384 . . . . . . 7 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
222214, 221eqtrd 2764 . . . . . 6 (𝜑 → (((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))
223222oveq2d 7385 . . . . 5 (𝜑 → (𝑁𝑐(((2 logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2))) = (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
224212, 223breqtrd 5128 . . . 4 (𝜑𝐴 < (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))))
225200recnd 11180 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
226225, 105, 106divcan3d 11941 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐶) / 2) = 𝐶)
227226eqcomd 2735 . . . . . . . . . 10 (𝜑𝐶 = ((2 · 𝐶) / 2))
228227oveq1d 7384 . . . . . . . . 9 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
2294, 200remulcld 11182 . . . . . . . . . . . 12 (𝜑 → (2 · 𝐶) ∈ ℝ)
230229recnd 11180 . . . . . . . . . . 11 (𝜑 → (2 · 𝐶) ∈ ℂ)
231205recnd 11180 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
232230, 231, 46, 106divdird 11974 . . . . . . . . . 10 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) = (((2 · 𝐶) / 2) + (𝐷 / 2)))
233232eqcomd 2735 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) / 2) + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
234228, 233eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2))
235 aks4d1p1p4.8 . . . . . . . . 9 (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸)
236229, 205readdcld 11181 . . . . . . . . . 10 (𝜑 → ((2 · 𝐶) + 𝐷) ∈ ℝ)
237236, 131, 73lediv1d 13019 . . . . . . . . 9 (𝜑 → (((2 · 𝐶) + 𝐷) ≤ 𝐸 ↔ (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2)))
238235, 237mpbid 232 . . . . . . . 8 (𝜑 → (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2))
239234, 238eqbrtrd 5124 . . . . . . 7 (𝜑 → (𝐶 + (𝐷 / 2)) ≤ (𝐸 / 2))
240207, 208, 208, 239leadd1dd 11770 . . . . . 6 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ ((𝐸 / 2) + (𝐸 / 2)))
2411322halvesd 12406 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
242240, 241breqtrd 5128 . . . . 5 (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸)
2432, 183, 209, 131cxpled 26663 . . . . 5 (𝜑 → (((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸 ↔ (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸)))
244242, 243mpbid 232 . . . 4 (𝜑 → (𝑁𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁𝑐𝐸))
245101, 211, 165, 224, 244ltletrd 11312 . . 3 (𝜑𝐴 < (𝑁𝑐𝐸))
246245, 155breqtrd 5128 . 2 (𝜑𝐴 < (2↑𝑐((2 logb 𝑁)↑5)))
247 1le2 12368 . . . . 5 1 ≤ 2
248247a1i 11 . . . 4 (𝜑 → 1 ≤ 2)
249172nn0red 12482 . . . 4 (𝜑𝐵 ∈ ℝ)
25021eqcomd 2735 . . . . 5 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
25133, 250breqtrd 5128 . . . 4 (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵)
2524, 248, 16, 249, 251cxplead 26664 . . 3 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝑐𝐵))
253 cxpexp 26611 . . . 4 ((2 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (2↑𝑐𝐵) = (2↑𝐵))
254105, 172, 253syl2anc 584 . . 3 (𝜑 → (2↑𝑐𝐵) = (2↑𝐵))
255252, 254breqtrd 5128 . 2 (𝜑 → (2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝐵))
256101, 166, 173, 246, 255ltletrd 11312 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585  {cpr 4587   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051   < clt 11186  cle 11187  cmin 11383   / cdiv 11813  cn 12164  2c2 12219  3c3 12220  4c4 12221  5c5 12222  7c7 12224  0cn0 12420  cz 12507  cuz 12771  +crp 12929  ...cfz 13446  cfl 13730  cceil 13731  cexp 14004  cprod 15846  𝑐ccxp 26498   logb clogb 26708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-ceil 13733  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-prod 15847  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802  df-log 26499  df-cxp 26500  df-logb 26709
This theorem is referenced by:  aks4d1p1p5  42057
  Copyright terms: Public domain W3C validator