Proof of Theorem aks4d1p1p4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | aks4d1p1p4.1 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 2 | 1 | nnred 12282 | . . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 3 |  | 2re 12341 | . . . . . . . . . 10
⊢ 2 ∈
ℝ | 
| 4 | 3 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℝ) | 
| 5 |  | 2pos 12370 | . . . . . . . . . 10
⊢ 0 <
2 | 
| 6 | 5 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 0 < 2) | 
| 7 | 1 | nngt0d 12316 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) | 
| 8 |  | 1red 11263 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) | 
| 9 |  | 1lt2 12438 | . . . . . . . . . . . . . . . . 17
⊢ 1 <
2 | 
| 10 | 9 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 < 2) | 
| 11 | 8, 10 | ltned 11398 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≠ 2) | 
| 12 | 11 | necomd 2995 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 1) | 
| 13 | 4, 6, 2, 7, 12 | relogbcld 41975 | . . . . . . . . . . . . 13
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) | 
| 14 |  | 5nn0 12548 | . . . . . . . . . . . . . 14
⊢ 5 ∈
ℕ0 | 
| 15 | 14 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 5 ∈
ℕ0) | 
| 16 | 13, 15 | reexpcld 14204 | . . . . . . . . . . . 12
⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈
ℝ) | 
| 17 |  | ceilcl 13883 | . . . . . . . . . . . 12
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℤ) | 
| 19 | 18 | zred 12724 | . . . . . . . . . 10
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℝ) | 
| 20 |  | aks4d1p1p4.3 | . . . . . . . . . . . 12
⊢ 𝐵 = (⌈‘((2
logb 𝑁)↑5)) | 
| 21 | 20 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) | 
| 22 | 21 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (⌈‘((2
logb 𝑁)↑5))
∈ ℝ)) | 
| 23 | 19, 22 | mpbird 257 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 24 |  | 0red 11265 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) | 
| 25 |  | 7re 12360 | . . . . . . . . . . 11
⊢ 7 ∈
ℝ | 
| 26 | 25 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → 7 ∈
ℝ) | 
| 27 |  | 7pos 12378 | . . . . . . . . . . 11
⊢ 0 <
7 | 
| 28 | 27 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → 0 < 7) | 
| 29 |  | aks4d1p1p4.4 | . . . . . . . . . . . . 13
⊢ (𝜑 → 3 ≤ 𝑁) | 
| 30 | 2, 29 | 3lexlogpow5ineq3 42059 | . . . . . . . . . . . 12
⊢ (𝜑 → 7 < ((2 logb
𝑁)↑5)) | 
| 31 | 26, 16, 30 | ltled 11410 | . . . . . . . . . . 11
⊢ (𝜑 → 7 ≤ ((2 logb
𝑁)↑5)) | 
| 32 |  | ceilge 13886 | . . . . . . . . . . . . 13
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2
logb 𝑁)↑5))) | 
| 33 | 16, 32 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤
(⌈‘((2 logb 𝑁)↑5))) | 
| 34 | 33, 21 | breqtrrd 5170 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵) | 
| 35 | 26, 16, 23, 31, 34 | letrd 11419 | . . . . . . . . . 10
⊢ (𝜑 → 7 ≤ 𝐵) | 
| 36 | 24, 26, 23, 28, 35 | ltletrd 11422 | . . . . . . . . 9
⊢ (𝜑 → 0 < 𝐵) | 
| 37 | 4, 6, 23, 36, 12 | relogbcld 41975 | . . . . . . . 8
⊢ (𝜑 → (2 logb 𝐵) ∈
ℝ) | 
| 38 | 37 | flcld 13839 | . . . . . . 7
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℤ) | 
| 39 | 24, 8 | readdcld 11291 | . . . . . . . . 9
⊢ (𝜑 → (0 + 1) ∈
ℝ) | 
| 40 | 38 | zred 12724 | . . . . . . . . . 10
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℝ) | 
| 41 | 40, 8 | readdcld 11291 | . . . . . . . . 9
⊢ (𝜑 → ((⌊‘(2
logb 𝐵)) + 1)
∈ ℝ) | 
| 42 | 4, 6, 4, 6, 12 | relogbcld 41975 | . . . . . . . . . 10
⊢ (𝜑 → (2 logb 2)
∈ ℝ) | 
| 43 | 8 | leidd 11830 | . . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 1) | 
| 44 |  | 1cnd 11257 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℂ) | 
| 45 | 44 | addlidd 11463 | . . . . . . . . . . . 12
⊢ (𝜑 → (0 + 1) =
1) | 
| 46 | 4 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℂ) | 
| 47 | 24, 6 | gtned 11397 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ≠ 0) | 
| 48 |  | logbid1 26812 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) =
1) | 
| 49 | 46, 47, 12, 48 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb 2) =
1) | 
| 50 | 49 | eqcomd 2742 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 = (2 logb
2)) | 
| 51 | 50 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝜑 → (2 logb 2) =
1) | 
| 52 | 45, 51 | breq12d 5155 | . . . . . . . . . . 11
⊢ (𝜑 → ((0 + 1) ≤ (2
logb 2) ↔ 1 ≤ 1)) | 
| 53 | 43, 52 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → (0 + 1) ≤ (2
logb 2)) | 
| 54 |  | 5re 12354 | . . . . . . . . . . . . . . 15
⊢ 5 ∈
ℝ | 
| 55 | 54 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 5 ∈
ℝ) | 
| 56 | 4, 55 | readdcld 11291 | . . . . . . . . . . . . 13
⊢ (𝜑 → (2 + 5) ∈
ℝ) | 
| 57 | 3, 14 | nn0addge1i 12576 | . . . . . . . . . . . . . 14
⊢ 2 ≤ (2
+ 5) | 
| 58 | 57 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ≤ (2 +
5)) | 
| 59 | 3 | recni 11276 | . . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℂ | 
| 60 |  | 5cn 12355 | . . . . . . . . . . . . . . . . 17
⊢ 5 ∈
ℂ | 
| 61 | 59, 60 | addcomi 11453 | . . . . . . . . . . . . . . . 16
⊢ (2 + 5) =
(5 + 2) | 
| 62 |  | 5p2e7 12423 | . . . . . . . . . . . . . . . 16
⊢ (5 + 2) =
7 | 
| 63 | 61, 62 | eqtri 2764 | . . . . . . . . . . . . . . 15
⊢ (2 + 5) =
7 | 
| 64 | 63 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (2 + 5) =
7) | 
| 65 | 26 | leidd 11830 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 7 ≤ 7) | 
| 66 | 64, 65 | eqbrtrd 5164 | . . . . . . . . . . . . 13
⊢ (𝜑 → (2 + 5) ≤
7) | 
| 67 | 4, 56, 26, 58, 66 | letrd 11419 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ≤ 7) | 
| 68 | 4, 26, 23, 67, 35 | letrd 11419 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝐵) | 
| 69 |  | 2z 12651 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ | 
| 70 | 69 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℤ) | 
| 71 | 70 | uzidd 12895 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
(ℤ≥‘2)) | 
| 72 |  | 2rp 13040 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ | 
| 73 | 72 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ+) | 
| 74 | 23, 36 | elrpd 13075 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 75 |  | logbleb 26827 | . . . . . . . . . . . 12
⊢ ((2
∈ (ℤ≥‘2) ∧ 2 ∈ ℝ+
∧ 𝐵 ∈
ℝ+) → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2
logb 𝐵))) | 
| 76 | 71, 73, 74, 75 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ 𝐵 ↔ (2 logb 2) ≤ (2
logb 𝐵))) | 
| 77 | 68, 76 | mpbid 232 | . . . . . . . . . 10
⊢ (𝜑 → (2 logb 2) ≤
(2 logb 𝐵)) | 
| 78 | 39, 42, 37, 53, 77 | letrd 11419 | . . . . . . . . 9
⊢ (𝜑 → (0 + 1) ≤ (2
logb 𝐵)) | 
| 79 |  | fllep1 13842 | . . . . . . . . . 10
⊢ ((2
logb 𝐵) ∈
ℝ → (2 logb 𝐵) ≤ ((⌊‘(2 logb
𝐵)) + 1)) | 
| 80 | 37, 79 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (2 logb 𝐵) ≤ ((⌊‘(2
logb 𝐵)) +
1)) | 
| 81 | 39, 37, 41, 78, 80 | letrd 11419 | . . . . . . . 8
⊢ (𝜑 → (0 + 1) ≤
((⌊‘(2 logb 𝐵)) + 1)) | 
| 82 | 24, 40, 8 | leadd1d 11858 | . . . . . . . 8
⊢ (𝜑 → (0 ≤ (⌊‘(2
logb 𝐵)) ↔
(0 + 1) ≤ ((⌊‘(2 logb 𝐵)) + 1))) | 
| 83 | 81, 82 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → 0 ≤ (⌊‘(2
logb 𝐵))) | 
| 84 | 38, 83 | jca 511 | . . . . . 6
⊢ (𝜑 → ((⌊‘(2
logb 𝐵)) ∈
ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵)))) | 
| 85 |  | elnn0z 12628 | . . . . . 6
⊢
((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔
((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤
(⌊‘(2 logb 𝐵)))) | 
| 86 | 84, 85 | sylibr 234 | . . . . 5
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℕ0) | 
| 87 | 2, 86 | reexpcld 14204 | . . . 4
⊢ (𝜑 → (𝑁↑(⌊‘(2 logb
𝐵))) ∈
ℝ) | 
| 88 |  | fzfid 14015 | . . . . 5
⊢ (𝜑 → (1...(⌊‘((2
logb 𝑁)↑2))) ∈ Fin) | 
| 89 | 2 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑁 ∈ ℝ) | 
| 90 |  | elfznn 13594 | . . . . . . . . 9
⊢ (𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2))) → 𝑘 ∈ ℕ) | 
| 91 | 90 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ) | 
| 92 | 91 | nnnn0d 12589 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0) | 
| 93 | 89, 92 | reexpcld 14204 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑𝑘) ∈ ℝ) | 
| 94 |  | 1red 11263 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ∈
ℝ) | 
| 95 | 93, 94 | resubcld 11692 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → ((𝑁↑𝑘) − 1) ∈ ℝ) | 
| 96 | 88, 95 | fprodrecl 15990 | . . . 4
⊢ (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1) ∈ ℝ) | 
| 97 | 87, 96 | remulcld 11292 | . . 3
⊢ (𝜑 → ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) ∈
ℝ) | 
| 98 |  | aks4d1p1p4.2 | . . . . 5
⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) | 
| 99 | 98 | a1i 11 | . . . 4
⊢ (𝜑 → 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1))) | 
| 100 | 99 | eleq1d 2825 | . . 3
⊢ (𝜑 → (𝐴 ∈ ℝ ↔ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) ∈
ℝ)) | 
| 101 | 97, 100 | mpbird 257 | . 2
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 102 |  | aks4d1p1p4.7 | . . . . . . . . 9
⊢ 𝐸 = ((2 logb 𝑁)↑4) | 
| 103 | 102 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝐸 = ((2 logb 𝑁)↑4)) | 
| 104 | 103 | oveq2d 7448 | . . . . . . 7
⊢ (𝜑 → (𝑁↑𝑐𝐸) = (𝑁↑𝑐((2
logb 𝑁)↑4))) | 
| 105 |  | 2cnd 12345 | . . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℂ) | 
| 106 | 73 | rpne0d 13083 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ≠ 0) | 
| 107 | 106, 12 | nelprd 4656 | . . . . . . . . . . . 12
⊢ (𝜑 → ¬ 2 ∈ {0,
1}) | 
| 108 | 105, 107 | eldifd 3961 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ∈ (ℂ ∖
{0, 1})) | 
| 109 | 2 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 110 | 24, 7 | ltned 11398 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≠ 𝑁) | 
| 111 |  | necom 2993 | . . . . . . . . . . . . . . . 16
⊢ (0 ≠
𝑁 ↔ 𝑁 ≠ 0) | 
| 112 | 111 | imbi2i 336 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 → 0 ≠ 𝑁) ↔ (𝜑 → 𝑁 ≠ 0)) | 
| 113 | 110, 112 | mpbi 230 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ≠ 0) | 
| 114 | 113 | neneqd 2944 | . . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑁 = 0) | 
| 115 |  | c0ex 11256 | . . . . . . . . . . . . . 14
⊢ 0 ∈
V | 
| 116 | 115 | elsn2 4664 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ {0} ↔ 𝑁 = 0) | 
| 117 | 114, 116 | sylnibr 329 | . . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑁 ∈ {0}) | 
| 118 | 109, 117 | eldifd 3961 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℂ ∖
{0})) | 
| 119 |  | cxplogb 26830 | . . . . . . . . . . 11
⊢ ((2
∈ (ℂ ∖ {0, 1}) ∧ 𝑁 ∈ (ℂ ∖ {0})) →
(2↑𝑐(2 logb 𝑁)) = 𝑁) | 
| 120 | 108, 118,
119 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 →
(2↑𝑐(2 logb 𝑁)) = 𝑁) | 
| 121 | 120 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 = (2↑𝑐(2
logb 𝑁))) | 
| 122 | 121 | oveq1d 7447 | . . . . . . . 8
⊢ (𝜑 → (𝑁↑𝑐((2
logb 𝑁)↑4))
= ((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))) | 
| 123 |  | eqidd 2737 | . . . . . . . 8
⊢ (𝜑 →
((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))
= ((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))) | 
| 124 | 122, 123 | eqtrd 2776 | . . . . . . 7
⊢ (𝜑 → (𝑁↑𝑐((2
logb 𝑁)↑4))
= ((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))) | 
| 125 | 104, 124 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → (𝑁↑𝑐𝐸) = ((2↑𝑐(2
logb 𝑁))↑𝑐((2
logb 𝑁)↑4))) | 
| 126 | 103 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝜑 → ((2 logb 𝑁)↑4) = 𝐸) | 
| 127 |  | 4nn0 12547 | . . . . . . . . . . . . 13
⊢ 4 ∈
ℕ0 | 
| 128 | 127 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 4 ∈
ℕ0) | 
| 129 | 13, 128 | reexpcld 14204 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 logb 𝑁)↑4) ∈
ℝ) | 
| 130 | 103 | eleq1d 2825 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℝ ↔ ((2 logb
𝑁)↑4) ∈
ℝ)) | 
| 131 | 129, 130 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℝ) | 
| 132 | 131 | recnd 11290 | . . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ ℂ) | 
| 133 | 126, 132 | eqeltrd 2840 | . . . . . . . 8
⊢ (𝜑 → ((2 logb 𝑁)↑4) ∈
ℂ) | 
| 134 | 73, 13, 133 | cxpmuld 26780 | . . . . . . 7
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) =
((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))) | 
| 135 | 134 | eqcomd 2742 | . . . . . 6
⊢ (𝜑 →
((2↑𝑐(2 logb 𝑁))↑𝑐((2
logb 𝑁)↑4))
= (2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4)))) | 
| 136 | 125, 135 | eqtrd 2776 | . . . . 5
⊢ (𝜑 → (𝑁↑𝑐𝐸) = (2↑𝑐((2
logb 𝑁) ·
((2 logb 𝑁)↑4)))) | 
| 137 | 13 | recnd 11290 | . . . . . . . . . 10
⊢ (𝜑 → (2 logb 𝑁) ∈
ℂ) | 
| 138 | 137 | exp1d 14182 | . . . . . . . . 9
⊢ (𝜑 → ((2 logb 𝑁)↑1) = (2 logb
𝑁)) | 
| 139 | 138 | eqcomd 2742 | . . . . . . . 8
⊢ (𝜑 → (2 logb 𝑁) = ((2 logb 𝑁)↑1)) | 
| 140 | 139 | oveq1d 7447 | . . . . . . 7
⊢ (𝜑 → ((2 logb 𝑁) · ((2 logb
𝑁)↑4)) = (((2
logb 𝑁)↑1)
· ((2 logb 𝑁)↑4))) | 
| 141 |  | 1nn0 12544 | . . . . . . . . . 10
⊢ 1 ∈
ℕ0 | 
| 142 | 141 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℕ0) | 
| 143 | 137, 128,
142 | expaddd 14189 | . . . . . . . 8
⊢ (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = (((2
logb 𝑁)↑1)
· ((2 logb 𝑁)↑4))) | 
| 144 | 143 | eqcomd 2742 | . . . . . . 7
⊢ (𝜑 → (((2 logb 𝑁)↑1) · ((2
logb 𝑁)↑4))
= ((2 logb 𝑁)↑(1 + 4))) | 
| 145 | 140, 144 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → ((2 logb 𝑁) · ((2 logb
𝑁)↑4)) = ((2
logb 𝑁)↑(1
+ 4))) | 
| 146 | 145 | oveq2d 7448 | . . . . 5
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁) · ((2 logb 𝑁)↑4))) =
(2↑𝑐((2 logb 𝑁)↑(1 + 4)))) | 
| 147 | 136, 146 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (𝑁↑𝑐𝐸) = (2↑𝑐((2
logb 𝑁)↑(1
+ 4)))) | 
| 148 |  | 4cn 12352 | . . . . . . . 8
⊢ 4 ∈
ℂ | 
| 149 |  | ax-1cn 11214 | . . . . . . . 8
⊢ 1 ∈
ℂ | 
| 150 |  | 4p1e5 12413 | . . . . . . . 8
⊢ (4 + 1) =
5 | 
| 151 | 148, 149,
150 | addcomli 11454 | . . . . . . 7
⊢ (1 + 4) =
5 | 
| 152 | 151 | a1i 11 | . . . . . 6
⊢ (𝜑 → (1 + 4) =
5) | 
| 153 | 152 | oveq2d 7448 | . . . . 5
⊢ (𝜑 → ((2 logb 𝑁)↑(1 + 4)) = ((2
logb 𝑁)↑5)) | 
| 154 | 153 | oveq2d 7448 | . . . 4
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁)↑(1 + 4))) =
(2↑𝑐((2 logb 𝑁)↑5))) | 
| 155 | 147, 154 | eqtrd 2776 | . . 3
⊢ (𝜑 → (𝑁↑𝑐𝐸) = (2↑𝑐((2
logb 𝑁)↑5))) | 
| 156 |  | 3re 12347 | . . . . . 6
⊢ 3 ∈
ℝ | 
| 157 | 156 | a1i 11 | . . . . 5
⊢ (𝜑 → 3 ∈
ℝ) | 
| 158 |  | 0le1 11787 | . . . . . . 7
⊢ 0 ≤
1 | 
| 159 | 158 | a1i 11 | . . . . . 6
⊢ (𝜑 → 0 ≤ 1) | 
| 160 |  | 1lt3 12440 | . . . . . . . 8
⊢ 1 <
3 | 
| 161 | 160 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 1 < 3) | 
| 162 | 8, 157, 161 | ltled 11410 | . . . . . 6
⊢ (𝜑 → 1 ≤ 3) | 
| 163 | 24, 8, 157, 159, 162 | letrd 11419 | . . . . 5
⊢ (𝜑 → 0 ≤ 3) | 
| 164 | 24, 157, 2, 163, 29 | letrd 11419 | . . . 4
⊢ (𝜑 → 0 ≤ 𝑁) | 
| 165 | 2, 164, 131 | recxpcld 26766 | . . 3
⊢ (𝜑 → (𝑁↑𝑐𝐸) ∈ ℝ) | 
| 166 | 155, 165 | eqeltrrd 2841 | . 2
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁)↑5)) ∈ ℝ) | 
| 167 | 21 | eleq1d 2825 | . . . . . 6
⊢ (𝜑 → (𝐵 ∈ ℤ ↔ (⌈‘((2
logb 𝑁)↑5))
∈ ℤ)) | 
| 168 | 18, 167 | mpbird 257 | . . . . 5
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 169 | 24, 23, 36 | ltled 11410 | . . . . 5
⊢ (𝜑 → 0 ≤ 𝐵) | 
| 170 | 168, 169 | jca 511 | . . . 4
⊢ (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) | 
| 171 |  | elnn0z 12628 | . . . 4
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℤ
∧ 0 ≤ 𝐵)) | 
| 172 | 170, 171 | sylibr 234 | . . 3
⊢ (𝜑 → 𝐵 ∈
ℕ0) | 
| 173 | 4, 172 | reexpcld 14204 | . 2
⊢ (𝜑 → (2↑𝐵) ∈ ℝ) | 
| 174 | 2, 7 | elrpd 13075 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℝ+) | 
| 175 | 16, 8 | readdcld 11291 | . . . . . . . . . 10
⊢ (𝜑 → (((2 logb 𝑁)↑5) + 1) ∈
ℝ) | 
| 176 | 15 | nn0zd 12641 | . . . . . . . . . . . . 13
⊢ (𝜑 → 5 ∈
ℤ) | 
| 177 |  | logb1 26813 | . . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) =
0) | 
| 178 | 46, 47, 12, 177 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 1) =
0) | 
| 179 | 178, 24 | eqeltrd 2840 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb 1)
∈ ℝ) | 
| 180 | 24 | leidd 11830 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 0) | 
| 181 | 178 | eqcomd 2742 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 = (2 logb
1)) | 
| 182 | 180, 181 | breqtrd 5168 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (2 logb
1)) | 
| 183 | 8, 157, 2, 161, 29 | ltletrd 11422 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 < 𝑁) | 
| 184 |  | 1rp 13039 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ+ | 
| 185 | 184 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ+) | 
| 186 |  | logblt 26828 | . . . . . . . . . . . . . . . 16
⊢ ((2
∈ (ℤ≥‘2) ∧ 1 ∈ ℝ+
∧ 𝑁 ∈
ℝ+) → (1 < 𝑁 ↔ (2 logb 1) < (2
logb 𝑁))) | 
| 187 | 71, 185, 174, 186 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 < 𝑁 ↔ (2 logb 1) < (2
logb 𝑁))) | 
| 188 | 183, 187 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb 1) <
(2 logb 𝑁)) | 
| 189 | 24, 179, 13, 182, 188 | lelttrd 11420 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (2 logb
𝑁)) | 
| 190 | 13, 176, 189 | 3jca 1128 | . . . . . . . . . . . 12
⊢ (𝜑 → ((2 logb 𝑁) ∈ ℝ ∧ 5 ∈
ℤ ∧ 0 < (2 logb 𝑁))) | 
| 191 |  | expgt0 14137 | . . . . . . . . . . . 12
⊢ (((2
logb 𝑁) ∈
ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑁)) → 0 < ((2
logb 𝑁)↑5)) | 
| 192 | 190, 191 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 0 < ((2 logb
𝑁)↑5)) | 
| 193 |  | ltp1 12108 | . . . . . . . . . . . 12
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → ((2 logb 𝑁)↑5) < (((2 logb 𝑁)↑5) + 1)) | 
| 194 | 16, 193 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 logb 𝑁)↑5) < (((2
logb 𝑁)↑5)
+ 1)) | 
| 195 | 24, 16, 175, 192, 194 | lttrd 11423 | . . . . . . . . . 10
⊢ (𝜑 → 0 < (((2
logb 𝑁)↑5)
+ 1)) | 
| 196 | 4, 6, 175, 195, 12 | relogbcld 41975 | . . . . . . . . 9
⊢ (𝜑 → (2 logb (((2
logb 𝑁)↑5)
+ 1)) ∈ ℝ) | 
| 197 |  | aks4d1p1p4.5 | . . . . . . . . . . 11
⊢ 𝐶 = (2 logb (((2
logb 𝑁)↑5)
+ 1)) | 
| 198 | 197 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → 𝐶 = (2 logb (((2 logb
𝑁)↑5) +
1))) | 
| 199 | 198 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ ℝ ↔ (2 logb
(((2 logb 𝑁)↑5) + 1)) ∈
ℝ)) | 
| 200 | 196, 199 | mpbird 257 | . . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 201 | 13 | resqcld 14166 | . . . . . . . . . 10
⊢ (𝜑 → ((2 logb 𝑁)↑2) ∈
ℝ) | 
| 202 |  | aks4d1p1p4.6 | . . . . . . . . . . . 12
⊢ 𝐷 = ((2 logb 𝑁)↑2) | 
| 203 | 202 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐷 = ((2 logb 𝑁)↑2)) | 
| 204 | 203 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝜑 → (𝐷 ∈ ℝ ↔ ((2 logb
𝑁)↑2) ∈
ℝ)) | 
| 205 | 201, 204 | mpbird 257 | . . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 206 | 205 | rehalfcld 12515 | . . . . . . . 8
⊢ (𝜑 → (𝐷 / 2) ∈ ℝ) | 
| 207 | 200, 206 | readdcld 11291 | . . . . . . 7
⊢ (𝜑 → (𝐶 + (𝐷 / 2)) ∈ ℝ) | 
| 208 | 131, 4, 106 | redivcld 12096 | . . . . . . 7
⊢ (𝜑 → (𝐸 / 2) ∈ ℝ) | 
| 209 | 207, 208 | readdcld 11291 | . . . . . 6
⊢ (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ∈ ℝ) | 
| 210 | 174, 209 | rpcxpcld 26776 | . . . . 5
⊢ (𝜑 → (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈
ℝ+) | 
| 211 | 210 | rpred 13078 | . . . 4
⊢ (𝜑 → (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ∈ ℝ) | 
| 212 | 1, 98, 20, 29 | aks4d1p1p2 42072 | . . . . 5
⊢ (𝜑 → 𝐴 < (𝑁↑𝑐(((2
logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2
logb 𝑁)↑4)
/ 2)))) | 
| 213 | 126 | oveq1d 7447 | . . . . . . . 8
⊢ (𝜑 → (((2 logb 𝑁)↑4) / 2) = (𝐸 / 2)) | 
| 214 | 213 | oveq2d 7448 | . . . . . . 7
⊢ (𝜑 → (((2 logb (((2
logb 𝑁)↑5)
+ 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = (((2
logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2))) | 
| 215 | 198 | eqcomd 2742 | . . . . . . . . . 10
⊢ (𝜑 → (2 logb (((2
logb 𝑁)↑5)
+ 1)) = 𝐶) | 
| 216 | 215 | oveq1d 7447 | . . . . . . . . 9
⊢ (𝜑 → ((2 logb (((2
logb 𝑁)↑5)
+ 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (((2 logb 𝑁)↑2) / 2))) | 
| 217 | 203 | eqcomd 2742 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 logb 𝑁)↑2) = 𝐷) | 
| 218 | 217 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝜑 → (((2 logb 𝑁)↑2) / 2) = (𝐷 / 2)) | 
| 219 | 218 | oveq2d 7448 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2))) | 
| 220 | 216, 219 | eqtrd 2776 | . . . . . . . 8
⊢ (𝜑 → ((2 logb (((2
logb 𝑁)↑5)
+ 1)) + (((2 logb 𝑁)↑2) / 2)) = (𝐶 + (𝐷 / 2))) | 
| 221 | 220 | oveq1d 7447 | . . . . . . 7
⊢ (𝜑 → (((2 logb (((2
logb 𝑁)↑5)
+ 1)) + (((2 logb 𝑁)↑2) / 2)) + (𝐸 / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) | 
| 222 | 214, 221 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → (((2 logb (((2
logb 𝑁)↑5)
+ 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2 logb 𝑁)↑4) / 2)) = ((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) | 
| 223 | 222 | oveq2d 7448 | . . . . 5
⊢ (𝜑 → (𝑁↑𝑐(((2
logb (((2 logb 𝑁)↑5) + 1)) + (((2 logb 𝑁)↑2) / 2)) + (((2
logb 𝑁)↑4)
/ 2))) = (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))) | 
| 224 | 212, 223 | breqtrd 5168 | . . . 4
⊢ (𝜑 → 𝐴 < (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2)))) | 
| 225 | 200 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| 226 | 225, 105,
106 | divcan3d 12049 | . . . . . . . . . . 11
⊢ (𝜑 → ((2 · 𝐶) / 2) = 𝐶) | 
| 227 | 226 | eqcomd 2742 | . . . . . . . . . 10
⊢ (𝜑 → 𝐶 = ((2 · 𝐶) / 2)) | 
| 228 | 227 | oveq1d 7447 | . . . . . . . . 9
⊢ (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) / 2) + (𝐷 / 2))) | 
| 229 | 4, 200 | remulcld 11292 | . . . . . . . . . . . 12
⊢ (𝜑 → (2 · 𝐶) ∈
ℝ) | 
| 230 | 229 | recnd 11290 | . . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝐶) ∈
ℂ) | 
| 231 | 205 | recnd 11290 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℂ) | 
| 232 | 230, 231,
46, 106 | divdird 12082 | . . . . . . . . . 10
⊢ (𝜑 → (((2 · 𝐶) + 𝐷) / 2) = (((2 · 𝐶) / 2) + (𝐷 / 2))) | 
| 233 | 232 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝜑 → (((2 · 𝐶) / 2) + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2)) | 
| 234 | 228, 233 | eqtrd 2776 | . . . . . . . 8
⊢ (𝜑 → (𝐶 + (𝐷 / 2)) = (((2 · 𝐶) + 𝐷) / 2)) | 
| 235 |  | aks4d1p1p4.8 | . . . . . . . . 9
⊢ (𝜑 → ((2 · 𝐶) + 𝐷) ≤ 𝐸) | 
| 236 | 229, 205 | readdcld 11291 | . . . . . . . . . 10
⊢ (𝜑 → ((2 · 𝐶) + 𝐷) ∈ ℝ) | 
| 237 | 236, 131,
73 | lediv1d 13124 | . . . . . . . . 9
⊢ (𝜑 → (((2 · 𝐶) + 𝐷) ≤ 𝐸 ↔ (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2))) | 
| 238 | 235, 237 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → (((2 · 𝐶) + 𝐷) / 2) ≤ (𝐸 / 2)) | 
| 239 | 234, 238 | eqbrtrd 5164 | . . . . . . 7
⊢ (𝜑 → (𝐶 + (𝐷 / 2)) ≤ (𝐸 / 2)) | 
| 240 | 207, 208,
208, 239 | leadd1dd 11878 | . . . . . 6
⊢ (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ ((𝐸 / 2) + (𝐸 / 2))) | 
| 241 | 132 | 2halvesd 12514 | . . . . . 6
⊢ (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸) | 
| 242 | 240, 241 | breqtrd 5168 | . . . . 5
⊢ (𝜑 → ((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸) | 
| 243 | 2, 183, 209, 131 | cxpled 26763 | . . . . 5
⊢ (𝜑 → (((𝐶 + (𝐷 / 2)) + (𝐸 / 2)) ≤ 𝐸 ↔ (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁↑𝑐𝐸))) | 
| 244 | 242, 243 | mpbid 232 | . . . 4
⊢ (𝜑 → (𝑁↑𝑐((𝐶 + (𝐷 / 2)) + (𝐸 / 2))) ≤ (𝑁↑𝑐𝐸)) | 
| 245 | 101, 211,
165, 224, 244 | ltletrd 11422 | . . 3
⊢ (𝜑 → 𝐴 < (𝑁↑𝑐𝐸)) | 
| 246 | 245, 155 | breqtrd 5168 | . 2
⊢ (𝜑 → 𝐴 < (2↑𝑐((2
logb 𝑁)↑5))) | 
| 247 |  | 1le2 12476 | . . . . 5
⊢ 1 ≤
2 | 
| 248 | 247 | a1i 11 | . . . 4
⊢ (𝜑 → 1 ≤ 2) | 
| 249 | 172 | nn0red 12590 | . . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 250 | 21 | eqcomd 2742 | . . . . 5
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
= 𝐵) | 
| 251 | 33, 250 | breqtrd 5168 | . . . 4
⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤ 𝐵) | 
| 252 | 4, 248, 16, 249, 251 | cxplead 26764 | . . 3
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁)↑5)) ≤
(2↑𝑐𝐵)) | 
| 253 |  | cxpexp 26711 | . . . 4
⊢ ((2
∈ ℂ ∧ 𝐵
∈ ℕ0) → (2↑𝑐𝐵) = (2↑𝐵)) | 
| 254 | 105, 172,
253 | syl2anc 584 | . . 3
⊢ (𝜑 →
(2↑𝑐𝐵) = (2↑𝐵)) | 
| 255 | 252, 254 | breqtrd 5168 | . 2
⊢ (𝜑 →
(2↑𝑐((2 logb 𝑁)↑5)) ≤ (2↑𝐵)) | 
| 256 | 101, 166,
173, 246, 255 | ltletrd 11422 | 1
⊢ (𝜑 → 𝐴 < (2↑𝐵)) |