MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbgcd1irr Structured version   Visualization version   GIF version

Theorem logbgcd1irr 26700
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 26701). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))

Proof of Theorem logbgcd1irr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12884 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 13032 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
323ad2ant2 1132 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ∈ ℝ+)
4 eluz2nn 12884 . . . . . 6 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
54nnrpd 13032 . . . . 5 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
653ad2ant1 1131 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝑋 ∈ ℝ+)
7 eluz2b3 12922 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
87simprbi 496 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
983ad2ant2 1132 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ≠ 1)
103, 6, 93jca 1126 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1))
11 relogbcl 26679 . . 3 ((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
1210, 11syl 17 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ ℝ)
13 eluz2gt1 12920 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
1413adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝑋)
154adantr 480 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℕ)
1615nnrpd 13032 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℝ+)
171adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℕ)
1817nnrpd 13032 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ+)
19 eluz2gt1 12920 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
2019adantl 481 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
21 logbgt0b 26699 . . . . . . . . . 10 ((𝑋 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2216, 18, 20, 21syl12anc 836 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2314, 22mpbird 257 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < (𝐵 logb 𝑋))
2423anim1ci 615 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)))
25 elpq 12975 . . . . . . 7 (((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2624, 25syl 17 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2726ex 412 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛)))
28 oveq2 7422 . . . . . . . . . 10 ((𝑚 / 𝑛) = (𝐵 logb 𝑋) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
2928eqcoms 2735 . . . . . . . . 9 ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
30 eluzelcn 12850 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
3130adantl 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℂ)
32 nnne0 12262 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
3433, 8nelprd 4655 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → ¬ 𝐵 ∈ {0, 1})
3534adantl 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝐵 ∈ {0, 1})
3631, 35eldifd 3955 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
37 eluzelcn 12850 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℂ)
3837adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℂ)
39 nnne0 12262 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ≠ 0)
40 nelsn 4664 . . . . . . . . . . . . . 14 (𝑋 ≠ 0 → ¬ 𝑋 ∈ {0})
414, 39, 403syl 18 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → ¬ 𝑋 ∈ {0})
4241adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝑋 ∈ {0})
4338, 42eldifd 3955 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ (ℂ ∖ {0}))
44 cxplogb 26692 . . . . . . . . . . 11 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4536, 43, 44syl2anc 583 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4729, 46sylan9eqr 2789 . . . . . . . 8 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵 logb 𝑋) = (𝑚 / 𝑛)) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋)
4847ex 412 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋))
49 oveq1 7421 . . . . . . . 8 ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛))
5031adantr 480 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ∈ ℂ)
51 nncn 12236 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5251adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℂ)
53 nncn 12236 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453adantl 481 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
55 nnne0 12262 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5655adantl 481 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5752, 54, 563jca 1126 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
58 divcl 11894 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (𝑚 / 𝑛) ∈ ℂ)
5957, 58syl 17 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
6059adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 / 𝑛) ∈ ℂ)
61 nnnn0 12495 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6261adantl 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
6362adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℕ0)
6450, 60, 633jca 1126 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0))
65 cxpmul2 26597 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = ((𝐵𝑐(𝑚 / 𝑛))↑𝑛))
6665eqcomd 2733 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6764, 66syl 17 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6857adantl 481 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 divcan1 11897 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7170oveq2d 7430 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑐𝑚))
7233adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ≠ 0)
7372adantr 480 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ≠ 0)
74 nnz 12595 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7574adantr 480 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7675adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑚 ∈ ℤ)
7750, 73, 76cxpexpzd 26619 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐𝑚) = (𝐵𝑚))
7871, 77eqtrd 2767 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑚))
7967, 78eqtrd 2767 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑚))
8079eqeq1d 2729 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) ↔ (𝐵𝑚) = (𝑋𝑛)))
81 simpr 484 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
82 rplpwr 16518 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
8315, 17, 81, 82syl2an3an 1420 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
84 oveq1 7421 . . . . . . . . . . . . . . . . 17 ((𝑋𝑛) = (𝐵𝑚) → ((𝑋𝑛) gcd 𝐵) = ((𝐵𝑚) gcd 𝐵))
8584eqeq1d 2729 . . . . . . . . . . . . . . . 16 ((𝑋𝑛) = (𝐵𝑚) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8685eqcoms 2735 . . . . . . . . . . . . . . 15 ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8786adantl 481 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
88 eluzelz 12848 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
8988adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
90 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
91 rpexp 16679 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
9289, 89, 90, 91syl2an3an 1420 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
93 gcdid 16487 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
9488, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = (abs‘𝐵))
95 eluzelre 12849 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
96 nnnn0 12495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
97 nn0ge0 12513 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
981, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
9995, 98absidd 15387 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (abs‘𝐵) = 𝐵)
10094, 99eqtrd 2767 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = 𝐵)
101100eqeq1d 2729 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
103102adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
104 eqneqall 2946 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 1 → (𝐵 ≠ 1 → ¬ (𝑋 gcd 𝐵) = 1))
1058, 104syl5com 31 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
106105adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
107106adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
108103, 107sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
10992, 108sylbid 239 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
110109adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
11187, 110sylbid 239 . . . . . . . . . . . . 13 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
112111ex 412 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1)))
113112com23 86 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑋𝑛) gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
11483, 113syld 47 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
115 ax-1 6 . . . . . . . . . 10 (¬ (𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
116114, 115pm2.61d1 180 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11780, 116sylbid 239 . . . . . . . 8 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11849, 117syl5 34 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ¬ (𝑋 gcd 𝐵) = 1))
11948, 118syld 47 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
120119rexlimdvva 3206 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
12127, 120syld 47 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ¬ (𝑋 gcd 𝐵) = 1))
122121con2d 134 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝑋 gcd 𝐵) = 1 → ¬ (𝐵 logb 𝑋) ∈ ℚ))
1231223impia 1115 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → ¬ (𝐵 logb 𝑋) ∈ ℚ)
12412, 123eldifd 3955 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wrex 3065  cdif 3941  {csn 4624  {cpr 4626   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11122  cr 11123  0cc0 11124  1c1 11125   · cmul 11129   < clt 11264  cle 11265   / cdiv 11887  cn 12228  2c2 12283  0cn0 12488  cz 12574  cuz 12838  cq 12948  +crp 12992  cexp 14044  abscabs 15199   gcd cgcd 16454  𝑐ccxp 26463   logb clogb 26670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ioc 13347  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-mod 13853  df-seq 13985  df-exp 14045  df-fac 14251  df-bc 14280  df-hash 14308  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-sum 15651  df-ef 16029  df-sin 16031  df-cos 16032  df-pi 16034  df-dvds 16217  df-gcd 16455  df-prm 16628  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-xrs 17469  df-qtop 17474  df-imas 17475  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-mulg 19008  df-cntz 19252  df-cmn 19721  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lp 23014  df-perf 23015  df-cn 23105  df-cnp 23106  df-haus 23193  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-xms 24200  df-ms 24201  df-tms 24202  df-cncf 24772  df-limc 25769  df-dv 25770  df-log 26464  df-cxp 26465  df-logb 26671
This theorem is referenced by:  2logb9irr  26701  logbprmirr  26702
  Copyright terms: Public domain W3C validator