MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbgcd1irr Structured version   Visualization version   GIF version

Theorem logbgcd1irr 25944
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 25945). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))

Proof of Theorem logbgcd1irr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12624 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 12770 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
323ad2ant2 1133 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ∈ ℝ+)
4 eluz2nn 12624 . . . . . 6 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
54nnrpd 12770 . . . . 5 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
653ad2ant1 1132 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝑋 ∈ ℝ+)
7 eluz2b3 12662 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
87simprbi 497 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
983ad2ant2 1133 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ≠ 1)
103, 6, 93jca 1127 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1))
11 relogbcl 25923 . . 3 ((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
1210, 11syl 17 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ ℝ)
13 eluz2gt1 12660 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
1413adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝑋)
154adantr 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℕ)
1615nnrpd 12770 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℝ+)
171adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℕ)
1817nnrpd 12770 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ+)
19 eluz2gt1 12660 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
2019adantl 482 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
21 logbgt0b 25943 . . . . . . . . . 10 ((𝑋 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2216, 18, 20, 21syl12anc 834 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2314, 22mpbird 256 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < (𝐵 logb 𝑋))
2423anim1ci 616 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)))
25 elpq 12715 . . . . . . 7 (((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2624, 25syl 17 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2726ex 413 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛)))
28 oveq2 7283 . . . . . . . . . 10 ((𝑚 / 𝑛) = (𝐵 logb 𝑋) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
2928eqcoms 2746 . . . . . . . . 9 ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
30 eluzelcn 12594 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
3130adantl 482 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℂ)
32 nnne0 12007 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
3433, 8nelprd 4592 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → ¬ 𝐵 ∈ {0, 1})
3534adantl 482 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝐵 ∈ {0, 1})
3631, 35eldifd 3898 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
37 eluzelcn 12594 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℂ)
3837adantr 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℂ)
39 nnne0 12007 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ≠ 0)
40 nelsn 4601 . . . . . . . . . . . . . 14 (𝑋 ≠ 0 → ¬ 𝑋 ∈ {0})
414, 39, 403syl 18 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → ¬ 𝑋 ∈ {0})
4241adantr 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝑋 ∈ {0})
4338, 42eldifd 3898 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ (ℂ ∖ {0}))
44 cxplogb 25936 . . . . . . . . . . 11 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4536, 43, 44syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4645adantr 481 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4729, 46sylan9eqr 2800 . . . . . . . 8 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵 logb 𝑋) = (𝑚 / 𝑛)) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋)
4847ex 413 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋))
49 oveq1 7282 . . . . . . . 8 ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛))
5031adantr 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ∈ ℂ)
51 nncn 11981 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5251adantr 481 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℂ)
53 nncn 11981 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453adantl 482 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
55 nnne0 12007 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5655adantl 482 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5752, 54, 563jca 1127 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
58 divcl 11639 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (𝑚 / 𝑛) ∈ ℂ)
5957, 58syl 17 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
6059adantl 482 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 / 𝑛) ∈ ℂ)
61 nnnn0 12240 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6261adantl 482 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
6362adantl 482 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℕ0)
6450, 60, 633jca 1127 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0))
65 cxpmul2 25844 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = ((𝐵𝑐(𝑚 / 𝑛))↑𝑛))
6665eqcomd 2744 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6764, 66syl 17 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6857adantl 482 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 divcan1 11642 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7170oveq2d 7291 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑐𝑚))
7233adantl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ≠ 0)
7372adantr 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ≠ 0)
74 nnz 12342 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7574adantr 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7675adantl 482 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑚 ∈ ℤ)
7750, 73, 76cxpexpzd 25866 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐𝑚) = (𝐵𝑚))
7871, 77eqtrd 2778 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑚))
7967, 78eqtrd 2778 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑚))
8079eqeq1d 2740 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) ↔ (𝐵𝑚) = (𝑋𝑛)))
81 simpr 485 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
82 rplpwr 16267 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
8315, 17, 81, 82syl2an3an 1421 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
84 oveq1 7282 . . . . . . . . . . . . . . . . 17 ((𝑋𝑛) = (𝐵𝑚) → ((𝑋𝑛) gcd 𝐵) = ((𝐵𝑚) gcd 𝐵))
8584eqeq1d 2740 . . . . . . . . . . . . . . . 16 ((𝑋𝑛) = (𝐵𝑚) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8685eqcoms 2746 . . . . . . . . . . . . . . 15 ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8786adantl 482 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
88 eluzelz 12592 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
8988adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
90 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
91 rpexp 16427 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
9289, 89, 90, 91syl2an3an 1421 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
93 gcdid 16234 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
9488, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = (abs‘𝐵))
95 eluzelre 12593 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
96 nnnn0 12240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
97 nn0ge0 12258 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
981, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
9995, 98absidd 15134 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (abs‘𝐵) = 𝐵)
10094, 99eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = 𝐵)
101100eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
102101adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
103102adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
104 eqneqall 2954 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 1 → (𝐵 ≠ 1 → ¬ (𝑋 gcd 𝐵) = 1))
1058, 104syl5com 31 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
106105adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
107106adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
108103, 107sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
10992, 108sylbid 239 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
110109adantr 481 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
11187, 110sylbid 239 . . . . . . . . . . . . 13 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
112111ex 413 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1)))
113112com23 86 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑋𝑛) gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
11483, 113syld 47 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
115 ax-1 6 . . . . . . . . . 10 (¬ (𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
116114, 115pm2.61d1 180 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11780, 116sylbid 239 . . . . . . . 8 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11849, 117syl5 34 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ¬ (𝑋 gcd 𝐵) = 1))
11948, 118syld 47 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
120119rexlimdvva 3223 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
12127, 120syld 47 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ¬ (𝑋 gcd 𝐵) = 1))
122121con2d 134 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝑋 gcd 𝐵) = 1 → ¬ (𝐵 logb 𝑋) ∈ ℚ))
1231223impia 1116 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → ¬ (𝐵 logb 𝑋) ∈ ℚ)
12412, 123eldifd 3898 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  {cpr 4563   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cq 12688  +crp 12730  cexp 13782  abscabs 14945   gcd cgcd 16201  𝑐ccxp 25711   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  2logb9irr  25945  logbprmirr  25946
  Copyright terms: Public domain W3C validator