MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbgcd1irr Structured version   Visualization version   GIF version

Theorem logbgcd1irr 25479
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 25480). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))

Proof of Theorem logbgcd1irr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12324 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 12470 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
323ad2ant2 1131 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ∈ ℝ+)
4 eluz2nn 12324 . . . . . 6 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
54nnrpd 12470 . . . . 5 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
653ad2ant1 1130 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝑋 ∈ ℝ+)
7 eluz2b3 12362 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
87simprbi 500 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
983ad2ant2 1131 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ≠ 1)
103, 6, 93jca 1125 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1))
11 relogbcl 25458 . . 3 ((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
1210, 11syl 17 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ ℝ)
13 eluz2gt1 12360 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
1413adantr 484 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝑋)
154adantr 484 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℕ)
1615nnrpd 12470 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℝ+)
171adantl 485 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℕ)
1817nnrpd 12470 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ+)
19 eluz2gt1 12360 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
2019adantl 485 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
21 logbgt0b 25478 . . . . . . . . . 10 ((𝑋 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2216, 18, 20, 21syl12anc 835 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2314, 22mpbird 260 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < (𝐵 logb 𝑋))
2423anim1ci 618 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)))
25 elpq 12415 . . . . . . 7 (((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2624, 25syl 17 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2726ex 416 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛)))
28 oveq2 7158 . . . . . . . . . 10 ((𝑚 / 𝑛) = (𝐵 logb 𝑋) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
2928eqcoms 2766 . . . . . . . . 9 ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
30 eluzelcn 12294 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
3130adantl 485 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℂ)
32 nnne0 11708 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
3433, 8nelprd 4553 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → ¬ 𝐵 ∈ {0, 1})
3534adantl 485 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝐵 ∈ {0, 1})
3631, 35eldifd 3869 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
37 eluzelcn 12294 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℂ)
3837adantr 484 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℂ)
39 nnne0 11708 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ≠ 0)
40 nelsn 4562 . . . . . . . . . . . . . 14 (𝑋 ≠ 0 → ¬ 𝑋 ∈ {0})
414, 39, 403syl 18 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → ¬ 𝑋 ∈ {0})
4241adantr 484 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝑋 ∈ {0})
4338, 42eldifd 3869 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ (ℂ ∖ {0}))
44 cxplogb 25471 . . . . . . . . . . 11 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4536, 43, 44syl2anc 587 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4645adantr 484 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4729, 46sylan9eqr 2815 . . . . . . . 8 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵 logb 𝑋) = (𝑚 / 𝑛)) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋)
4847ex 416 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋))
49 oveq1 7157 . . . . . . . 8 ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛))
5031adantr 484 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ∈ ℂ)
51 nncn 11682 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5251adantr 484 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℂ)
53 nncn 11682 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453adantl 485 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
55 nnne0 11708 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5655adantl 485 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5752, 54, 563jca 1125 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
58 divcl 11342 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (𝑚 / 𝑛) ∈ ℂ)
5957, 58syl 17 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
6059adantl 485 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 / 𝑛) ∈ ℂ)
61 nnnn0 11941 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6261adantl 485 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
6362adantl 485 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℕ0)
6450, 60, 633jca 1125 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0))
65 cxpmul2 25379 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = ((𝐵𝑐(𝑚 / 𝑛))↑𝑛))
6665eqcomd 2764 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6764, 66syl 17 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6857adantl 485 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 divcan1 11345 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7170oveq2d 7166 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑐𝑚))
7233adantl 485 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ≠ 0)
7372adantr 484 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ≠ 0)
74 nnz 12043 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7574adantr 484 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7675adantl 485 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑚 ∈ ℤ)
7750, 73, 76cxpexpzd 25401 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐𝑚) = (𝐵𝑚))
7871, 77eqtrd 2793 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑚))
7967, 78eqtrd 2793 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑚))
8079eqeq1d 2760 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) ↔ (𝐵𝑚) = (𝑋𝑛)))
81 simpr 488 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
82 rplpwr 15958 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
8315, 17, 81, 82syl2an3an 1419 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
84 oveq1 7157 . . . . . . . . . . . . . . . . 17 ((𝑋𝑛) = (𝐵𝑚) → ((𝑋𝑛) gcd 𝐵) = ((𝐵𝑚) gcd 𝐵))
8584eqeq1d 2760 . . . . . . . . . . . . . . . 16 ((𝑋𝑛) = (𝐵𝑚) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8685eqcoms 2766 . . . . . . . . . . . . . . 15 ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8786adantl 485 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
88 eluzelz 12292 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
8988adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
90 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
91 rpexp 16118 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
9289, 89, 90, 91syl2an3an 1419 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
93 gcdid 15926 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
9488, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = (abs‘𝐵))
95 eluzelre 12293 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
96 nnnn0 11941 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
97 nn0ge0 11959 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
981, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
9995, 98absidd 14830 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (abs‘𝐵) = 𝐵)
10094, 99eqtrd 2793 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = 𝐵)
101100eqeq1d 2760 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
102101adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
103102adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
104 eqneqall 2962 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 1 → (𝐵 ≠ 1 → ¬ (𝑋 gcd 𝐵) = 1))
1058, 104syl5com 31 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
106105adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
107106adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
108103, 107sylbid 243 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
10992, 108sylbid 243 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
110109adantr 484 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
11187, 110sylbid 243 . . . . . . . . . . . . 13 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
112111ex 416 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1)))
113112com23 86 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑋𝑛) gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
11483, 113syld 47 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
115 ax-1 6 . . . . . . . . . 10 (¬ (𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
116114, 115pm2.61d1 183 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11780, 116sylbid 243 . . . . . . . 8 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11849, 117syl5 34 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ¬ (𝑋 gcd 𝐵) = 1))
11948, 118syld 47 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
120119rexlimdvva 3218 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
12127, 120syld 47 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ¬ (𝑋 gcd 𝐵) = 1))
122121con2d 136 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝑋 gcd 𝐵) = 1 → ¬ (𝐵 logb 𝑋) ∈ ℚ))
1231223impia 1114 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → ¬ (𝐵 logb 𝑋) ∈ ℚ)
12412, 123eldifd 3869 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wrex 3071  cdif 3855  {csn 4522  {cpr 4524   class class class wbr 5032  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   · cmul 10580   < clt 10713  cle 10714   / cdiv 11335  cn 11674  2c2 11729  0cn0 11934  cz 12020  cuz 12282  cq 12388  +crp 12430  cexp 13479  abscabs 14641   gcd cgcd 15893  𝑐ccxp 25246   logb clogb 25449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-dvds 15656  df-gcd 15894  df-prm 16068  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cxp 25248  df-logb 25450
This theorem is referenced by:  2logb9irr  25480  logbprmirr  25481
  Copyright terms: Public domain W3C validator