MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbgcd1irr Structured version   Visualization version   GIF version

Theorem logbgcd1irr 26711
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 26712). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))

Proof of Theorem logbgcd1irr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12854 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 13000 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
323ad2ant2 1134 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ∈ ℝ+)
4 eluz2nn 12854 . . . . . 6 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
54nnrpd 13000 . . . . 5 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
653ad2ant1 1133 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝑋 ∈ ℝ+)
7 eluz2b3 12888 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
87simprbi 496 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
983ad2ant2 1134 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ≠ 1)
103, 6, 93jca 1128 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1))
11 relogbcl 26690 . . 3 ((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
1210, 11syl 17 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ ℝ)
13 eluz2gt1 12886 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
1413adantr 480 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝑋)
154adantr 480 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℕ)
1615nnrpd 13000 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℝ+)
171adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℕ)
1817nnrpd 13000 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ+)
19 eluz2gt1 12886 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
2019adantl 481 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
21 logbgt0b 26710 . . . . . . . . . 10 ((𝑋 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2216, 18, 20, 21syl12anc 836 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2314, 22mpbird 257 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < (𝐵 logb 𝑋))
2423anim1ci 616 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)))
25 elpq 12941 . . . . . . 7 (((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2624, 25syl 17 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2726ex 412 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛)))
28 oveq2 7398 . . . . . . . . . 10 ((𝑚 / 𝑛) = (𝐵 logb 𝑋) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
2928eqcoms 2738 . . . . . . . . 9 ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
30 eluzelcn 12812 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
3130adantl 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℂ)
32 nnne0 12227 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
3433, 8nelprd 4624 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → ¬ 𝐵 ∈ {0, 1})
3534adantl 481 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝐵 ∈ {0, 1})
3631, 35eldifd 3928 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
37 eluzelcn 12812 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℂ)
3837adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℂ)
39 nnne0 12227 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ≠ 0)
40 nelsn 4633 . . . . . . . . . . . . . 14 (𝑋 ≠ 0 → ¬ 𝑋 ∈ {0})
414, 39, 403syl 18 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → ¬ 𝑋 ∈ {0})
4241adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝑋 ∈ {0})
4338, 42eldifd 3928 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ (ℂ ∖ {0}))
44 cxplogb 26703 . . . . . . . . . . 11 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4536, 43, 44syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4645adantr 480 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4729, 46sylan9eqr 2787 . . . . . . . 8 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵 logb 𝑋) = (𝑚 / 𝑛)) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋)
4847ex 412 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋))
49 oveq1 7397 . . . . . . . 8 ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛))
5031adantr 480 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ∈ ℂ)
51 nncn 12201 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5251adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℂ)
53 nncn 12201 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453adantl 481 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
55 nnne0 12227 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5655adantl 481 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5752, 54, 563jca 1128 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
58 divcl 11850 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (𝑚 / 𝑛) ∈ ℂ)
5957, 58syl 17 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
6059adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 / 𝑛) ∈ ℂ)
61 nnnn0 12456 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6261adantl 481 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
6362adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℕ0)
6450, 60, 633jca 1128 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0))
65 cxpmul2 26605 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = ((𝐵𝑐(𝑚 / 𝑛))↑𝑛))
6665eqcomd 2736 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6764, 66syl 17 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6857adantl 481 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 divcan1 11853 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7170oveq2d 7406 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑐𝑚))
7233adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ≠ 0)
7372adantr 480 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ≠ 0)
74 nnz 12557 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7574adantr 480 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7675adantl 481 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑚 ∈ ℤ)
7750, 73, 76cxpexpzd 26627 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐𝑚) = (𝐵𝑚))
7871, 77eqtrd 2765 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑚))
7967, 78eqtrd 2765 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑚))
8079eqeq1d 2732 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) ↔ (𝐵𝑚) = (𝑋𝑛)))
81 simpr 484 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
82 rplpwr 16535 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
8315, 17, 81, 82syl2an3an 1424 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
84 oveq1 7397 . . . . . . . . . . . . . . . . 17 ((𝑋𝑛) = (𝐵𝑚) → ((𝑋𝑛) gcd 𝐵) = ((𝐵𝑚) gcd 𝐵))
8584eqeq1d 2732 . . . . . . . . . . . . . . . 16 ((𝑋𝑛) = (𝐵𝑚) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8685eqcoms 2738 . . . . . . . . . . . . . . 15 ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8786adantl 481 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
88 eluzelz 12810 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
8988adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
90 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
91 rpexp 16699 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
9289, 89, 90, 91syl2an3an 1424 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
93 gcdid 16504 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
9488, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = (abs‘𝐵))
95 eluzelre 12811 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
96 nnnn0 12456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
97 nn0ge0 12474 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
981, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
9995, 98absidd 15396 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (abs‘𝐵) = 𝐵)
10094, 99eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = 𝐵)
101100eqeq1d 2732 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
103102adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
104 eqneqall 2937 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 1 → (𝐵 ≠ 1 → ¬ (𝑋 gcd 𝐵) = 1))
1058, 104syl5com 31 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
106105adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
107106adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
108103, 107sylbid 240 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
10992, 108sylbid 240 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
110109adantr 480 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
11187, 110sylbid 240 . . . . . . . . . . . . 13 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
112111ex 412 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1)))
113112com23 86 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑋𝑛) gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
11483, 113syld 47 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
115 ax-1 6 . . . . . . . . . 10 (¬ (𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
116114, 115pm2.61d1 180 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11780, 116sylbid 240 . . . . . . . 8 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11849, 117syl5 34 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ¬ (𝑋 gcd 𝐵) = 1))
11948, 118syld 47 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
120119rexlimdvva 3195 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
12127, 120syld 47 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ¬ (𝑋 gcd 𝐵) = 1))
122121con2d 134 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝑋 gcd 𝐵) = 1 → ¬ (𝐵 logb 𝑋) ∈ ℚ))
1231223impia 1117 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → ¬ (𝐵 logb 𝑋) ∈ ℚ)
12412, 123eldifd 3928 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  cq 12914  +crp 12958  cexp 14033  abscabs 15207   gcd cgcd 16471  𝑐ccxp 26471   logb clogb 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-logb 26682
This theorem is referenced by:  2logb9irr  26712  logbprmirr  26713
  Copyright terms: Public domain W3C validator