MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   GIF version

Theorem pmtrprfv3 19440
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
2 simp1 1136 . . . . 5 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
323ad2ant2 1134 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
4 simp22 1208 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
53, 4prssd 4803 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
6 enpr2 10021 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
763expia 1121 . . . . . . . 8 ((𝑋𝐷𝑌𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
873adant3 1132 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
98com12 32 . . . . . 6 (𝑋𝑌 → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1093ad2ant1 1133 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1110impcom 407 . . . 4 (((𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
12113adant1 1130 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
13 simp23 1209 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
14 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1514pmtrfv 19438 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑍𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
161, 5, 12, 13, 15syl31anc 1375 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
17 necom 2986 . . . . . . 7 (𝑋𝑍𝑍𝑋)
1817biimpi 216 . . . . . 6 (𝑋𝑍𝑍𝑋)
19183ad2ant2 1134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑋)
20193ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑋)
21 necom 2986 . . . . . . 7 (𝑌𝑍𝑍𝑌)
2221biimpi 216 . . . . . 6 (𝑌𝑍𝑍𝑌)
23223ad2ant3 1135 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
24233ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
2520, 24nelprd 4638 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2625iffalsed 4516 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍) = 𝑍)
2716, 26eqtrd 2771 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cdif 3928  wss 3931  ifcif 4505  {csn 4606  {cpr 4608   cuni 4888   class class class wbr 5124  cfv 6536  2oc2o 8479  cen 8961  pmTrspcpmtr 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1o 8485  df-2o 8486  df-en 8965  df-pmtr 19428
This theorem is referenced by:  pmtr3ncomlem1  19459  psgnfzto1stlem  33116
  Copyright terms: Public domain W3C validator