MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   GIF version

Theorem pmtrprfv3 19368
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
2 simp1 1136 . . . . 5 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
323ad2ant2 1134 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
4 simp22 1208 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
53, 4prssd 4773 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
6 enpr2 9902 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
763expia 1121 . . . . . . . 8 ((𝑋𝐷𝑌𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
873adant3 1132 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
98com12 32 . . . . . 6 (𝑋𝑌 → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1093ad2ant1 1133 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1110impcom 407 . . . 4 (((𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
12113adant1 1130 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
13 simp23 1209 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
14 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1514pmtrfv 19366 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑍𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
161, 5, 12, 13, 15syl31anc 1375 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
17 necom 2982 . . . . . . 7 (𝑋𝑍𝑍𝑋)
1817biimpi 216 . . . . . 6 (𝑋𝑍𝑍𝑋)
19183ad2ant2 1134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑋)
20193ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑋)
21 necom 2982 . . . . . . 7 (𝑌𝑍𝑍𝑌)
2221biimpi 216 . . . . . 6 (𝑌𝑍𝑍𝑌)
23223ad2ant3 1135 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
24233ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
2520, 24nelprd 4609 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2625iffalsed 4485 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍) = 𝑍)
2716, 26eqtrd 2768 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898  ifcif 4474  {csn 4575  {cpr 4577   cuni 4858   class class class wbr 5093  cfv 6486  2oc2o 8385  cen 8872  pmTrspcpmtr 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1o 8391  df-2o 8392  df-en 8876  df-pmtr 19356
This theorem is referenced by:  pmtr3ncomlem1  19387  psgnfzto1stlem  33076
  Copyright terms: Public domain W3C validator