MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   GIF version

Theorem pmtrprfv3 19496
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
2 simp1 1136 . . . . 5 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
323ad2ant2 1134 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
4 simp22 1207 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
53, 4prssd 4847 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
6 enpr2 10071 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
763expia 1121 . . . . . . . 8 ((𝑋𝐷𝑌𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
873adant3 1132 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
98com12 32 . . . . . 6 (𝑋𝑌 → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1093ad2ant1 1133 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1110impcom 407 . . . 4 (((𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
12113adant1 1130 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
13 simp23 1208 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
14 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1514pmtrfv 19494 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑍𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
161, 5, 12, 13, 15syl31anc 1373 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
17 necom 3000 . . . . . . 7 (𝑋𝑍𝑍𝑋)
1817biimpi 216 . . . . . 6 (𝑋𝑍𝑍𝑋)
19183ad2ant2 1134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑋)
20193ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑋)
21 necom 3000 . . . . . . 7 (𝑌𝑍𝑍𝑌)
2221biimpi 216 . . . . . 6 (𝑌𝑍𝑍𝑌)
23223ad2ant3 1135 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
24233ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
2520, 24nelprd 4679 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2625iffalsed 4559 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍) = 𝑍)
2716, 26eqtrd 2780 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  ifcif 4548  {csn 4648  {cpr 4650   cuni 4931   class class class wbr 5166  cfv 6573  2oc2o 8516  cen 9000  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-2o 8523  df-en 9004  df-pmtr 19484
This theorem is referenced by:  pmtr3ncomlem1  19515  psgnfzto1stlem  33093
  Copyright terms: Public domain W3C validator