MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   GIF version

Theorem pmtrprfv3 19364
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
2 simp1 1136 . . . . 5 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
323ad2ant2 1134 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
4 simp22 1208 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
53, 4prssd 4774 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
6 enpr2 9892 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
763expia 1121 . . . . . . . 8 ((𝑋𝐷𝑌𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
873adant3 1132 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2o))
98com12 32 . . . . . 6 (𝑋𝑌 → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1093ad2ant1 1133 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2o))
1110impcom 407 . . . 4 (((𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
12113adant1 1130 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
13 simp23 1209 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
14 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1514pmtrfv 19362 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑍𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
161, 5, 12, 13, 15syl31anc 1375 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
17 necom 2981 . . . . . . 7 (𝑋𝑍𝑍𝑋)
1817biimpi 216 . . . . . 6 (𝑋𝑍𝑍𝑋)
19183ad2ant2 1134 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑋)
20193ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑋)
21 necom 2981 . . . . . . 7 (𝑌𝑍𝑍𝑌)
2221biimpi 216 . . . . . 6 (𝑌𝑍𝑍𝑌)
23223ad2ant3 1135 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
24233ad2ant3 1135 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
2520, 24nelprd 4610 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2625iffalsed 4486 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍) = 𝑍)
2716, 26eqtrd 2766 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3899  wss 3902  ifcif 4475  {csn 4576  {cpr 4578   cuni 4859   class class class wbr 5091  cfv 6481  2oc2o 8379  cen 8866  pmTrspcpmtr 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-2o 8386  df-en 8870  df-pmtr 19352
This theorem is referenced by:  pmtr3ncomlem1  19383  psgnfzto1stlem  33064
  Copyright terms: Public domain W3C validator