Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelogpow2b Structured version   Visualization version   GIF version

Theorem dvrelogpow2b 42101
Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.)
Hypotheses
Ref Expression
dvrelogpow2b.1 (𝜑𝐴 ∈ ℝ)
dvrelogpow2b.2 (𝜑𝐵 ∈ ℝ)
dvrelogpow2b.3 (𝜑 → 0 < 𝐴)
dvrelogpow2b.4 (𝜑𝐴𝐵)
dvrelogpow2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
dvrelogpow2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
dvrelogpow2b.7 𝐶 = (𝑁 / ((log‘2)↑𝑁))
dvrelogpow2b.8 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvrelogpow2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelogpow2b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelogpow2b.5 . . . 4 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)))
32oveq2d 7357 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))))
4 reelprrecn 11093 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 cnelprrecn 11094 . . . . 5 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
8 elioore 13270 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
109recnd 11135 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
11 dvrelogpow2b.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 dvrelogpow2b.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
15 dvrelogpow2b.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
17 dvrelogpow2b.4 . . . . . . . . . 10 (𝜑𝐴𝐵)
1817adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2012, 14, 16, 18, 190nonelalab 42100 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥)
2120necomd 2983 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
2210, 21logcld 26501 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
23 2cnd 12198 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
24 0ne2 12322 . . . . . . . . 9 0 ≠ 2
2524a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 2)
2625necomd 2983 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2723, 26logcld 26501 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
28 0red 11110 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
29 1lt2 12286 . . . . . . . . . 10 1 < 2
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
31 2rp 12890 . . . . . . . . . 10 2 ∈ ℝ+
32 loggt0b 26563 . . . . . . . . . 10 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
3331, 32ax-mp 5 . . . . . . . . 9 (0 < (log‘2) ↔ 1 < 2)
3430, 33sylibr 234 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (log‘2))
3528, 34ltned 11244 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ (log‘2))
3635necomd 2983 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
3722, 27, 36divcld 11892 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥) / (log‘2)) ∈ ℂ)
38 1red 11108 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3938, 30ltned 11244 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
4039necomd 2983 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
4126, 40nelprd 4605 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
4223, 41eldifd 3908 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
43 necom 2981 . . . . . . . . . . . 12 (0 ≠ 𝑥𝑥 ≠ 0)
4443imbi2i 336 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) ↔ ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0))
4520, 44mpbi 230 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
4645neneqd 2933 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 0)
47 velsn 4587 . . . . . . . . 9 (𝑥 ∈ {0} ↔ 𝑥 = 0)
4846, 47sylnibr 329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4910, 48eldifd 3908 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
50 logbval 26698 . . . . . . 7 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5142, 49, 50syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5251eleq1d 2816 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥) ∈ ℂ ↔ ((log‘𝑥) / (log‘2)) ∈ ℂ))
5337, 52mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
5431a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
5554relogcld 26554 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
569, 55remulcld 11137 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
5754rpne0d 12934 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
5823, 57logcld 26501 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
5910, 58, 21, 36mulne0d 11764 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
6038, 56, 59redivcld 11944 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
61 simpr 484 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
62 dvrelogpow2b.8 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6362nnnn0d 12437 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6463adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
6561, 64expcld 14048 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
6662nncnd 12136 . . . . . 6 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
68 nnm1nn0 12417 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6962, 68syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ0)
7069adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
7161, 70expcld 14048 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
7267, 71mulcld 11127 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
7311rexrd 11157 . . . . 5 (𝜑𝐴 ∈ ℝ*)
7413rexrd 11157 . . . . 5 (𝜑𝐵 ∈ ℝ*)
75 0red 11110 . . . . . 6 (𝜑 → 0 ∈ ℝ)
7675, 11, 15ltled 11256 . . . . 5 (𝜑 → 0 ≤ 𝐴)
77 eqid 2731 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
78 eqid 2731 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
7973, 74, 76, 17, 77, 78dvrelog2b 42099 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
80 dvexp 25879 . . . . 5 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
8162, 80syl 17 . . . 4 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
82 oveq1 7348 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑦𝑁) = ((2 logb 𝑥)↑𝑁))
83 oveq1 7348 . . . . 5 (𝑦 = (2 logb 𝑥) → (𝑦↑(𝑁 − 1)) = ((2 logb 𝑥)↑(𝑁 − 1)))
8483oveq2d 7357 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))))
855, 7, 53, 60, 65, 72, 79, 81, 82, 84dvmptco 25898 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
86 dvrelogpow2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
8786a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))))
88 dvrelogpow2b.7 . . . . . . . . . . . . . 14 𝐶 = (𝑁 / ((log‘2)↑𝑁))
8988a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 = (𝑁 / ((log‘2)↑𝑁)))
9089oveq1d 7356 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
9166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℂ)
9263nn0zd 12489 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℤ)
9427, 36, 93expclzd 14053 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ∈ ℂ)
9569adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℕ0)
9622, 95expcld 14048 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9727, 36, 93expne0d 14054 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ≠ 0)
9891, 94, 96, 10, 97, 21divmuldivd 11933 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)))
9994, 10mulcomd 11128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2)↑𝑁)))
100 1cnd 11102 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
101100, 66pncan3d 11470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
102101eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 = (1 + (𝑁 − 1)))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 = (1 + (𝑁 − 1)))
104103oveq2d 7357 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2)↑(1 + (𝑁 − 1))))
105 1nn0 12392 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℕ0)
10727, 95, 106expaddd 14050 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(1 + (𝑁 − 1))) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
108104, 107eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
10927exp1d 14043 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑1) = (log‘2))
110109oveq1d 7356 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
111108, 110eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
112111oveq2d 7357 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2)↑𝑁)) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11399, 112eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11427, 95expcld 14048 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ∈ ℂ)
11510, 27, 114mulassd 11130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
116115eqcomd 2737 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
117113, 116eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
11810, 27mulcld 11127 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℂ)
119118, 114mulcomd 11128 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
120117, 119eqtrd 2766 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
121120oveq2d 7357 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12298, 121eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12390, 122eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12491, 96mulcld 11127 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((log‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
125 1zzd 12498 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℤ)
12693, 125zsubcld 12577 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℤ)
12727, 36, 126expne0d 14054 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ≠ 0)
128124, 114, 118, 127, 59divdiv1d 11923 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
129128eqcomd 2737 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
130123, 129eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13191, 96, 114, 127divassd 11927 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))))
132131oveq1d 7356 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
133130, 132eqtrd 2766 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
13422, 27, 36, 95expdivd 14062 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥) / (log‘2))↑(𝑁 − 1)) = (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))))
135134eqcomd 2737 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
136135oveq2d 7357 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
137136oveq1d 7356 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
138133, 137eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13951oveq1d 7356 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
140139oveq2d 7357 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
141140oveq1d 7356 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
142141eqcomd 2737 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
143138, 142eqtrd 2766 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
14453, 95expcld 14048 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) ∈ ℂ)
14591, 144mulcld 11127 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) ∈ ℂ)
146145, 118, 59divrecd 11895 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
147143, 146eqtrd 2766 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
148147mpteq2dva 5179 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
14987, 148eqtrd 2766 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
150149eqcomd 2737 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))) = 𝐺)
15185, 150eqtrd 2766 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = 𝐺)
1523, 151eqtrd 2766 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4571  {cpr 4573   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  +crp 12885  (,)cioo 13240  cexp 13963   D cdv 25786  logclog 26485   logb clogb 26696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-logb 26697
This theorem is referenced by:  aks4d1p1p6  42106  aks4d1p1p5  42108
  Copyright terms: Public domain W3C validator