Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelogpow2b Structured version   Visualization version   GIF version

Theorem dvrelogpow2b 42056
Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.)
Hypotheses
Ref Expression
dvrelogpow2b.1 (𝜑𝐴 ∈ ℝ)
dvrelogpow2b.2 (𝜑𝐵 ∈ ℝ)
dvrelogpow2b.3 (𝜑 → 0 < 𝐴)
dvrelogpow2b.4 (𝜑𝐴𝐵)
dvrelogpow2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
dvrelogpow2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
dvrelogpow2b.7 𝐶 = (𝑁 / ((log‘2)↑𝑁))
dvrelogpow2b.8 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvrelogpow2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelogpow2b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelogpow2b.5 . . . 4 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)))
32oveq2d 7403 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))))
4 reelprrecn 11160 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 cnelprrecn 11161 . . . . 5 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
8 elioore 13336 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
109recnd 11202 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
11 dvrelogpow2b.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 dvrelogpow2b.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
15 dvrelogpow2b.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
17 dvrelogpow2b.4 . . . . . . . . . 10 (𝜑𝐴𝐵)
1817adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2012, 14, 16, 18, 190nonelalab 42055 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥)
2120necomd 2980 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
2210, 21logcld 26479 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
23 2cnd 12264 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
24 0ne2 12388 . . . . . . . . 9 0 ≠ 2
2524a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 2)
2625necomd 2980 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2723, 26logcld 26479 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
28 0red 11177 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
29 1lt2 12352 . . . . . . . . . 10 1 < 2
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
31 2rp 12956 . . . . . . . . . 10 2 ∈ ℝ+
32 loggt0b 26541 . . . . . . . . . 10 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
3331, 32ax-mp 5 . . . . . . . . 9 (0 < (log‘2) ↔ 1 < 2)
3430, 33sylibr 234 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (log‘2))
3528, 34ltned 11310 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ (log‘2))
3635necomd 2980 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
3722, 27, 36divcld 11958 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥) / (log‘2)) ∈ ℂ)
38 1red 11175 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3938, 30ltned 11310 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
4039necomd 2980 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
4126, 40nelprd 4621 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
4223, 41eldifd 3925 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
43 necom 2978 . . . . . . . . . . . 12 (0 ≠ 𝑥𝑥 ≠ 0)
4443imbi2i 336 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) ↔ ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0))
4520, 44mpbi 230 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
4645neneqd 2930 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 0)
47 velsn 4605 . . . . . . . . 9 (𝑥 ∈ {0} ↔ 𝑥 = 0)
4846, 47sylnibr 329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4910, 48eldifd 3925 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
50 logbval 26676 . . . . . . 7 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5142, 49, 50syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5251eleq1d 2813 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥) ∈ ℂ ↔ ((log‘𝑥) / (log‘2)) ∈ ℂ))
5337, 52mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
5431a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
5554relogcld 26532 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
569, 55remulcld 11204 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
5754rpne0d 13000 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
5823, 57logcld 26479 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
5910, 58, 21, 36mulne0d 11830 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
6038, 56, 59redivcld 12010 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
61 simpr 484 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
62 dvrelogpow2b.8 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6362nnnn0d 12503 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6463adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
6561, 64expcld 14111 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
6662nncnd 12202 . . . . . 6 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
68 nnm1nn0 12483 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6962, 68syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ0)
7069adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
7161, 70expcld 14111 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
7267, 71mulcld 11194 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
7311rexrd 11224 . . . . 5 (𝜑𝐴 ∈ ℝ*)
7413rexrd 11224 . . . . 5 (𝜑𝐵 ∈ ℝ*)
75 0red 11177 . . . . . 6 (𝜑 → 0 ∈ ℝ)
7675, 11, 15ltled 11322 . . . . 5 (𝜑 → 0 ≤ 𝐴)
77 eqid 2729 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
78 eqid 2729 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
7973, 74, 76, 17, 77, 78dvrelog2b 42054 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
80 dvexp 25857 . . . . 5 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
8162, 80syl 17 . . . 4 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
82 oveq1 7394 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑦𝑁) = ((2 logb 𝑥)↑𝑁))
83 oveq1 7394 . . . . 5 (𝑦 = (2 logb 𝑥) → (𝑦↑(𝑁 − 1)) = ((2 logb 𝑥)↑(𝑁 − 1)))
8483oveq2d 7403 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))))
855, 7, 53, 60, 65, 72, 79, 81, 82, 84dvmptco 25876 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
86 dvrelogpow2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
8786a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))))
88 dvrelogpow2b.7 . . . . . . . . . . . . . 14 𝐶 = (𝑁 / ((log‘2)↑𝑁))
8988a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 = (𝑁 / ((log‘2)↑𝑁)))
9089oveq1d 7402 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
9166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℂ)
9263nn0zd 12555 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℤ)
9427, 36, 93expclzd 14116 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ∈ ℂ)
9569adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℕ0)
9622, 95expcld 14111 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9727, 36, 93expne0d 14117 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ≠ 0)
9891, 94, 96, 10, 97, 21divmuldivd 11999 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)))
9994, 10mulcomd 11195 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2)↑𝑁)))
100 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
101100, 66pncan3d 11536 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
102101eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 = (1 + (𝑁 − 1)))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 = (1 + (𝑁 − 1)))
104103oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2)↑(1 + (𝑁 − 1))))
105 1nn0 12458 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℕ0)
10727, 95, 106expaddd 14113 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(1 + (𝑁 − 1))) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
108104, 107eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
10927exp1d 14106 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑1) = (log‘2))
110109oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
111108, 110eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
112111oveq2d 7403 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2)↑𝑁)) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11399, 112eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11427, 95expcld 14111 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ∈ ℂ)
11510, 27, 114mulassd 11197 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
116115eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
117113, 116eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
11810, 27mulcld 11194 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℂ)
119118, 114mulcomd 11195 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
120117, 119eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
121120oveq2d 7403 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12298, 121eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12390, 122eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12491, 96mulcld 11194 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((log‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
125 1zzd 12564 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℤ)
12693, 125zsubcld 12643 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℤ)
12727, 36, 126expne0d 14117 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ≠ 0)
128124, 114, 118, 127, 59divdiv1d 11989 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
129128eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
130123, 129eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13191, 96, 114, 127divassd 11993 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))))
132131oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
133130, 132eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
13422, 27, 36, 95expdivd 14125 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥) / (log‘2))↑(𝑁 − 1)) = (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))))
135134eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
136135oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
137136oveq1d 7402 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
138133, 137eqtrd 2764 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13951oveq1d 7402 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
140139oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
141140oveq1d 7402 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
142141eqcomd 2735 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
143138, 142eqtrd 2764 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
14453, 95expcld 14111 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) ∈ ℂ)
14591, 144mulcld 11194 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) ∈ ℂ)
146145, 118, 59divrecd 11961 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
147143, 146eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
148147mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
14987, 148eqtrd 2764 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
150149eqcomd 2735 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))) = 𝐺)
15185, 150eqtrd 2764 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = 𝐺)
1523, 151eqtrd 2764 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  +crp 12951  (,)cioo 13306  cexp 14026   D cdv 25764  logclog 26463   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-logb 26675
This theorem is referenced by:  aks4d1p1p6  42061  aks4d1p1p5  42063
  Copyright terms: Public domain W3C validator