Step | Hyp | Ref
| Expression |
1 | | dvrelogpow2b.5 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) |
3 | 2 | oveq2d 7271 |
. 2
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)))) |
4 | | reelprrecn 10894 |
. . . . 5
⊢ ℝ
∈ {ℝ, ℂ} |
5 | 4 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
6 | | cnelprrecn 10895 |
. . . . 5
⊢ ℂ
∈ {ℝ, ℂ} |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
8 | | elioore 13038 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ) |
9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
10 | 9 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ) |
11 | | dvrelogpow2b.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
12 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
13 | | dvrelogpow2b.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
15 | | dvrelogpow2b.3 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝐴) |
16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴) |
17 | | dvrelogpow2b.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
19 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
20 | 12, 14, 16, 18, 19 | 0nonelalab 40003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) |
21 | 20 | necomd 2998 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0) |
22 | 10, 21 | logcld 25631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ) |
23 | | 2cnd 11981 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ) |
24 | | 0ne2 12110 |
. . . . . . . . 9
⊢ 0 ≠
2 |
25 | 24 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 2) |
26 | 25 | necomd 2998 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
27 | 23, 26 | logcld 25631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈
ℂ) |
28 | | 0red 10909 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
29 | | 1lt2 12074 |
. . . . . . . . . 10
⊢ 1 <
2 |
30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2) |
31 | | 2rp 12664 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
32 | | loggt0b 25692 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ+ → (0 < (log‘2) ↔ 1 <
2)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . 9
⊢ (0 <
(log‘2) ↔ 1 < 2) |
34 | 30, 33 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 <
(log‘2)) |
35 | 28, 34 | ltned 11041 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠
(log‘2)) |
36 | 35 | necomd 2998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠
0) |
37 | 22, 27, 36 | divcld 11681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥) / (log‘2)) ∈
ℂ) |
38 | | 1red 10907 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) |
39 | 38, 30 | ltned 11041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2) |
40 | 39 | necomd 2998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1) |
41 | 26, 40 | nelprd 4589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0,
1}) |
42 | 23, 41 | eldifd 3894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0,
1})) |
43 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (0 ≠
𝑥 ↔ 𝑥 ≠ 0) |
44 | 43 | imbi2i 335 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) ↔ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)) |
45 | 20, 44 | mpbi 229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0) |
46 | 45 | neneqd 2947 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 0) |
47 | | velsn 4574 |
. . . . . . . . 9
⊢ (𝑥 ∈ {0} ↔ 𝑥 = 0) |
48 | 46, 47 | sylnibr 328 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0}) |
49 | 10, 48 | eldifd 3894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖
{0})) |
50 | | logbval 25821 |
. . . . . . 7
⊢ ((2
∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2
logb 𝑥) =
((log‘𝑥) /
(log‘2))) |
51 | 42, 49, 50 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) /
(log‘2))) |
52 | 51 | eleq1d 2823 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥) ∈ ℂ ↔
((log‘𝑥) /
(log‘2)) ∈ ℂ)) |
53 | 37, 52 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈
ℂ) |
54 | 31 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈
ℝ+) |
55 | 54 | relogcld 25683 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈
ℝ) |
56 | 9, 55 | remulcld 10936 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈
ℝ) |
57 | 54 | rpne0d 12706 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
58 | 23, 57 | logcld 25631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈
ℂ) |
59 | 10, 58, 21, 36 | mulne0d 11557 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠
0) |
60 | 38, 56, 59 | redivcld 11733 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈
ℝ) |
61 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
62 | | dvrelogpow2b.8 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
63 | 62 | nnnn0d 12223 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
64 | 63 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈
ℕ0) |
65 | 61, 64 | expcld 13792 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝑁) ∈ ℂ) |
66 | 62 | nncnd 11919 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
67 | 66 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈ ℂ) |
68 | | nnm1nn0 12204 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
69 | 62, 68 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
70 | 69 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 1) ∈
ℕ0) |
71 | 61, 70 | expcld 13792 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈
ℂ) |
72 | 67, 71 | mulcld 10926 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈
ℂ) |
73 | 11 | rexrd 10956 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
74 | 13 | rexrd 10956 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
75 | | 0red 10909 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
76 | 75, 11, 15 | ltled 11053 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝐴) |
77 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) |
78 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) |
79 | 73, 74, 76, 17, 77, 78 | dvrelog2b 40002 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))) |
80 | | dvexp 25022 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝑦↑𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1))))) |
81 | 62, 80 | syl 17 |
. . . 4
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1))))) |
82 | | oveq1 7262 |
. . . 4
⊢ (𝑦 = (2 logb 𝑥) → (𝑦↑𝑁) = ((2 logb 𝑥)↑𝑁)) |
83 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = (2 logb 𝑥) → (𝑦↑(𝑁 − 1)) = ((2 logb 𝑥)↑(𝑁 − 1))) |
84 | 83 | oveq2d 7271 |
. . . 4
⊢ (𝑦 = (2 logb 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1)))) |
85 | 5, 7, 53, 60, 65, 72, 79, 81, 82, 84 | dvmptco 25041 |
. . 3
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 ·
(log‘2)))))) |
86 | | dvrelogpow2b.6 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) |
87 | 86 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))) |
88 | | dvrelogpow2b.7 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (𝑁 / ((log‘2)↑𝑁)) |
89 | 88 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 = (𝑁 / ((log‘2)↑𝑁))) |
90 | 89 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) |
91 | 66 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℂ) |
92 | 63 | nn0zd 12353 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℤ) |
94 | 27, 36, 93 | expclzd 13797 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ∈
ℂ) |
95 | 69 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈
ℕ0) |
96 | 22, 95 | expcld 13792 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(𝑁 − 1)) ∈
ℂ) |
97 | 27, 36, 93 | expne0d 13798 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ≠ 0) |
98 | 91, 94, 96, 10, 97, 21 | divmuldivd 11722 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥))) |
99 | 94, 10 | mulcomd 10927 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2)↑𝑁))) |
100 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 1 ∈
ℂ) |
101 | 100, 66 | pncan3d 11265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1 + (𝑁 − 1)) = 𝑁) |
102 | 101 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑁 = (1 + (𝑁 − 1))) |
103 | 102 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 = (1 + (𝑁 − 1))) |
104 | 103 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2)↑(1 +
(𝑁 −
1)))) |
105 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℕ0 |
106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈
ℕ0) |
107 | 27, 95, 106 | expaddd 13794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(1 + (𝑁 − 1))) =
(((log‘2)↑1) · ((log‘2)↑(𝑁 − 1)))) |
108 | 104, 107 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = (((log‘2)↑1)
· ((log‘2)↑(𝑁 − 1)))) |
109 | 27 | exp1d 13787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑1) =
(log‘2)) |
110 | 109 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑1) ·
((log‘2)↑(𝑁
− 1))) = ((log‘2) · ((log‘2)↑(𝑁 − 1)))) |
111 | 108, 110 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2) ·
((log‘2)↑(𝑁
− 1)))) |
112 | 111 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2)↑𝑁)) = (𝑥 · ((log‘2) ·
((log‘2)↑(𝑁
− 1))))) |
113 | 99, 112 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2) ·
((log‘2)↑(𝑁
− 1))))) |
114 | 27, 95 | expcld 13792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ∈
ℂ) |
115 | 10, 27, 114 | mulassd 10929 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) ·
((log‘2)↑(𝑁
− 1))) = (𝑥 ·
((log‘2) · ((log‘2)↑(𝑁 − 1))))) |
116 | 115 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2) ·
((log‘2)↑(𝑁
− 1)))) = ((𝑥
· (log‘2)) · ((log‘2)↑(𝑁 − 1)))) |
117 | 113, 116 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = ((𝑥 · (log‘2)) ·
((log‘2)↑(𝑁
− 1)))) |
118 | 10, 27 | mulcld 10926 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈
ℂ) |
119 | 118, 114 | mulcomd 10927 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) ·
((log‘2)↑(𝑁
− 1))) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) |
120 | 117, 119 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) |
121 | 120 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 ·
(log‘2))))) |
122 | 98, 121 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 ·
(log‘2))))) |
123 | 90, 122 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 ·
(log‘2))))) |
124 | 91, 96 | mulcld 10926 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((log‘𝑥)↑(𝑁 − 1))) ∈
ℂ) |
125 | | 1zzd 12281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℤ) |
126 | 93, 125 | zsubcld 12360 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℤ) |
127 | 27, 36, 126 | expne0d 13798 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ≠
0) |
128 | 124, 114,
118, 127, 59 | divdiv1d 11712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) =
((𝑁 ·
((log‘𝑥)↑(𝑁 − 1))) /
(((log‘2)↑(𝑁
− 1)) · (𝑥
· (log‘2))))) |
129 | 128 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) =
(((𝑁 ·
((log‘𝑥)↑(𝑁 − 1))) /
((log‘2)↑(𝑁
− 1))) / (𝑥 ·
(log‘2)))) |
130 | 123, 129 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 ·
(log‘2)))) |
131 | 91, 96, 114, 127 | divassd 11716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))))) |
132 | 131 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) =
((𝑁 ·
(((log‘𝑥)↑(𝑁 − 1)) /
((log‘2)↑(𝑁
− 1)))) / (𝑥 ·
(log‘2)))) |
133 | 130, 132 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 ·
(log‘2)))) |
134 | 22, 27, 36, 95 | expdivd 13806 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥) / (log‘2))↑(𝑁 − 1)) = (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) |
135 | 134 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))) =
(((log‘𝑥) /
(log‘2))↑(𝑁
− 1))) |
136 | 135 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))) |
137 | 136 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))) =
((𝑁 ·
(((log‘𝑥) /
(log‘2))↑(𝑁
− 1))) / (𝑥 ·
(log‘2)))) |
138 | 133, 137 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2)))) |
139 | 51 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) |
140 | 139 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))) |
141 | 140 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 ·
(log‘2)))) |
142 | 141 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb
𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2)))) |
143 | 138, 142 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2)))) |
144 | 53, 95 | expcld 13792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) ∈
ℂ) |
145 | 91, 144 | mulcld 10926 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) ∈
ℂ) |
146 | 145, 118,
59 | divrecd 11684 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb
𝑥)↑(𝑁 − 1))) · (1 / (𝑥 ·
(log‘2))))) |
147 | 143, 146 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 ·
(log‘2))))) |
148 | 147 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 ·
(log‘2)))))) |
149 | 87, 148 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 ·
(log‘2)))))) |
150 | 149 | eqcomd 2744 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))) =
𝐺) |
151 | 85, 150 | eqtrd 2778 |
. 2
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = 𝐺) |
152 | 3, 151 | eqtrd 2778 |
1
⊢ (𝜑 → (ℝ D 𝐹) = 𝐺) |