Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelogpow2b Structured version   Visualization version   GIF version

Theorem dvrelogpow2b 41426
Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.)
Hypotheses
Ref Expression
dvrelogpow2b.1 (𝜑𝐴 ∈ ℝ)
dvrelogpow2b.2 (𝜑𝐵 ∈ ℝ)
dvrelogpow2b.3 (𝜑 → 0 < 𝐴)
dvrelogpow2b.4 (𝜑𝐴𝐵)
dvrelogpow2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
dvrelogpow2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
dvrelogpow2b.7 𝐶 = (𝑁 / ((log‘2)↑𝑁))
dvrelogpow2b.8 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvrelogpow2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelogpow2b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelogpow2b.5 . . . 4 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)))
32oveq2d 7417 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))))
4 reelprrecn 11198 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 cnelprrecn 11199 . . . . 5 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
8 elioore 13351 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
109recnd 11239 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
11 dvrelogpow2b.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 dvrelogpow2b.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
15 dvrelogpow2b.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
17 dvrelogpow2b.4 . . . . . . . . . 10 (𝜑𝐴𝐵)
1817adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2012, 14, 16, 18, 190nonelalab 41425 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥)
2120necomd 2988 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
2210, 21logcld 26421 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
23 2cnd 12287 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
24 0ne2 12416 . . . . . . . . 9 0 ≠ 2
2524a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 2)
2625necomd 2988 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2723, 26logcld 26421 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
28 0red 11214 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
29 1lt2 12380 . . . . . . . . . 10 1 < 2
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
31 2rp 12976 . . . . . . . . . 10 2 ∈ ℝ+
32 loggt0b 26482 . . . . . . . . . 10 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
3331, 32ax-mp 5 . . . . . . . . 9 (0 < (log‘2) ↔ 1 < 2)
3430, 33sylibr 233 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (log‘2))
3528, 34ltned 11347 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ (log‘2))
3635necomd 2988 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
3722, 27, 36divcld 11987 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥) / (log‘2)) ∈ ℂ)
38 1red 11212 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3938, 30ltned 11347 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
4039necomd 2988 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
4126, 40nelprd 4651 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
4223, 41eldifd 3951 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
43 necom 2986 . . . . . . . . . . . 12 (0 ≠ 𝑥𝑥 ≠ 0)
4443imbi2i 336 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) ↔ ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0))
4520, 44mpbi 229 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
4645neneqd 2937 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 0)
47 velsn 4636 . . . . . . . . 9 (𝑥 ∈ {0} ↔ 𝑥 = 0)
4846, 47sylnibr 329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4910, 48eldifd 3951 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
50 logbval 26614 . . . . . . 7 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5142, 49, 50syl2anc 583 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5251eleq1d 2810 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥) ∈ ℂ ↔ ((log‘𝑥) / (log‘2)) ∈ ℂ))
5337, 52mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
5431a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
5554relogcld 26473 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
569, 55remulcld 11241 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
5754rpne0d 13018 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
5823, 57logcld 26421 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
5910, 58, 21, 36mulne0d 11863 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
6038, 56, 59redivcld 12039 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
61 simpr 484 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
62 dvrelogpow2b.8 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6362nnnn0d 12529 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6463adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
6561, 64expcld 14108 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
6662nncnd 12225 . . . . . 6 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
68 nnm1nn0 12510 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6962, 68syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ0)
7069adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
7161, 70expcld 14108 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
7267, 71mulcld 11231 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
7311rexrd 11261 . . . . 5 (𝜑𝐴 ∈ ℝ*)
7413rexrd 11261 . . . . 5 (𝜑𝐵 ∈ ℝ*)
75 0red 11214 . . . . . 6 (𝜑 → 0 ∈ ℝ)
7675, 11, 15ltled 11359 . . . . 5 (𝜑 → 0 ≤ 𝐴)
77 eqid 2724 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
78 eqid 2724 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
7973, 74, 76, 17, 77, 78dvrelog2b 41424 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
80 dvexp 25807 . . . . 5 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
8162, 80syl 17 . . . 4 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
82 oveq1 7408 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑦𝑁) = ((2 logb 𝑥)↑𝑁))
83 oveq1 7408 . . . . 5 (𝑦 = (2 logb 𝑥) → (𝑦↑(𝑁 − 1)) = ((2 logb 𝑥)↑(𝑁 − 1)))
8483oveq2d 7417 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))))
855, 7, 53, 60, 65, 72, 79, 81, 82, 84dvmptco 25826 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
86 dvrelogpow2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
8786a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))))
88 dvrelogpow2b.7 . . . . . . . . . . . . . 14 𝐶 = (𝑁 / ((log‘2)↑𝑁))
8988a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 = (𝑁 / ((log‘2)↑𝑁)))
9089oveq1d 7416 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
9166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℂ)
9263nn0zd 12581 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℤ)
9427, 36, 93expclzd 14113 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ∈ ℂ)
9569adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℕ0)
9622, 95expcld 14108 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9727, 36, 93expne0d 14114 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ≠ 0)
9891, 94, 96, 10, 97, 21divmuldivd 12028 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)))
9994, 10mulcomd 11232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2)↑𝑁)))
100 1cnd 11206 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
101100, 66pncan3d 11571 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
102101eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 = (1 + (𝑁 − 1)))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 = (1 + (𝑁 − 1)))
104103oveq2d 7417 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2)↑(1 + (𝑁 − 1))))
105 1nn0 12485 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℕ0)
10727, 95, 106expaddd 14110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(1 + (𝑁 − 1))) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
108104, 107eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
10927exp1d 14103 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑1) = (log‘2))
110109oveq1d 7416 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
111108, 110eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
112111oveq2d 7417 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2)↑𝑁)) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11399, 112eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11427, 95expcld 14108 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ∈ ℂ)
11510, 27, 114mulassd 11234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
116115eqcomd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
117113, 116eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
11810, 27mulcld 11231 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℂ)
119118, 114mulcomd 11232 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
120117, 119eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
121120oveq2d 7417 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12298, 121eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12390, 122eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12491, 96mulcld 11231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((log‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
125 1zzd 12590 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℤ)
12693, 125zsubcld 12668 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℤ)
12727, 36, 126expne0d 14114 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ≠ 0)
128124, 114, 118, 127, 59divdiv1d 12018 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
129128eqcomd 2730 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
130123, 129eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13191, 96, 114, 127divassd 12022 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))))
132131oveq1d 7416 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
133130, 132eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
13422, 27, 36, 95expdivd 14122 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥) / (log‘2))↑(𝑁 − 1)) = (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))))
135134eqcomd 2730 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
136135oveq2d 7417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
137136oveq1d 7416 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
138133, 137eqtrd 2764 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13951oveq1d 7416 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
140139oveq2d 7417 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
141140oveq1d 7416 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
142141eqcomd 2730 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
143138, 142eqtrd 2764 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
14453, 95expcld 14108 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) ∈ ℂ)
14591, 144mulcld 11231 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) ∈ ℂ)
146145, 118, 59divrecd 11990 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
147143, 146eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
148147mpteq2dva 5238 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
14987, 148eqtrd 2764 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
150149eqcomd 2730 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))) = 𝐺)
15185, 150eqtrd 2764 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = 𝐺)
1523, 151eqtrd 2764 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  cdif 3937  {csn 4620  {cpr 4622   class class class wbr 5138  cmpt 5221  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11245  cle 11246  cmin 11441   / cdiv 11868  cn 12209  2c2 12264  0cn0 12469  cz 12555  +crp 12971  (,)cioo 13321  cexp 14024   D cdv 25714  logclog 26405   logb clogb 26612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-cmp 23213  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407  df-logb 26613
This theorem is referenced by:  aks4d1p1p6  41431  aks4d1p1p5  41433
  Copyright terms: Public domain W3C validator