Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrelogpow2b Structured version   Visualization version   GIF version

Theorem dvrelogpow2b 42049
Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024.)
Hypotheses
Ref Expression
dvrelogpow2b.1 (𝜑𝐴 ∈ ℝ)
dvrelogpow2b.2 (𝜑𝐵 ∈ ℝ)
dvrelogpow2b.3 (𝜑 → 0 < 𝐴)
dvrelogpow2b.4 (𝜑𝐴𝐵)
dvrelogpow2b.5 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
dvrelogpow2b.6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
dvrelogpow2b.7 𝐶 = (𝑁 / ((log‘2)↑𝑁))
dvrelogpow2b.8 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvrelogpow2b (𝜑 → (ℝ D 𝐹) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem dvrelogpow2b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrelogpow2b.5 . . . 4 𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁)))
32oveq2d 7446 . 2 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))))
4 reelprrecn 11244 . . . . 5 ℝ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
6 cnelprrecn 11245 . . . . 5 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
8 elioore 13413 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
109recnd 11286 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
11 dvrelogpow2b.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 dvrelogpow2b.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
15 dvrelogpow2b.3 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
17 dvrelogpow2b.4 . . . . . . . . . 10 (𝜑𝐴𝐵)
1817adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
19 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2012, 14, 16, 18, 190nonelalab 42048 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥)
2120necomd 2993 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
2210, 21logcld 26626 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℂ)
23 2cnd 12341 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
24 0ne2 12470 . . . . . . . . 9 0 ≠ 2
2524a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 2)
2625necomd 2993 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2723, 26logcld 26626 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
28 0red 11261 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
29 1lt2 12434 . . . . . . . . . 10 1 < 2
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
31 2rp 13036 . . . . . . . . . 10 2 ∈ ℝ+
32 loggt0b 26688 . . . . . . . . . 10 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
3331, 32ax-mp 5 . . . . . . . . 9 (0 < (log‘2) ↔ 1 < 2)
3430, 33sylibr 234 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (log‘2))
3528, 34ltned 11394 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ (log‘2))
3635necomd 2993 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
3722, 27, 36divcld 12040 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥) / (log‘2)) ∈ ℂ)
38 1red 11259 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3938, 30ltned 11394 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
4039necomd 2993 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
4126, 40nelprd 4661 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 2 ∈ {0, 1})
4223, 41eldifd 3973 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℂ ∖ {0, 1}))
43 necom 2991 . . . . . . . . . . . 12 (0 ≠ 𝑥𝑥 ≠ 0)
4443imbi2i 336 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≠ 𝑥) ↔ ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0))
4520, 44mpbi 230 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
4645neneqd 2942 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 0)
47 velsn 4646 . . . . . . . . 9 (𝑥 ∈ {0} ↔ 𝑥 = 0)
4846, 47sylnibr 329 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {0})
4910, 48eldifd 3973 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (ℂ ∖ {0}))
50 logbval 26823 . . . . . . 7 ((2 ∈ (ℂ ∖ {0, 1}) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5142, 49, 50syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) = ((log‘𝑥) / (log‘2)))
5251eleq1d 2823 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥) ∈ ℂ ↔ ((log‘𝑥) / (log‘2)) ∈ ℂ))
5337, 52mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
5431a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
5554relogcld 26679 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
569, 55remulcld 11288 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
5754rpne0d 13079 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
5823, 57logcld 26626 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
5910, 58, 21, 36mulne0d 11912 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
6038, 56, 59redivcld 12092 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
61 simpr 484 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
62 dvrelogpow2b.8 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6362nnnn0d 12584 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
6463adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
6561, 64expcld 14182 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
6662nncnd 12279 . . . . . 6 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
68 nnm1nn0 12564 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6962, 68syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ0)
7069adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
7161, 70expcld 14182 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
7267, 71mulcld 11278 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
7311rexrd 11308 . . . . 5 (𝜑𝐴 ∈ ℝ*)
7413rexrd 11308 . . . . 5 (𝜑𝐵 ∈ ℝ*)
75 0red 11261 . . . . . 6 (𝜑 → 0 ∈ ℝ)
7675, 11, 15ltled 11406 . . . . 5 (𝜑 → 0 ≤ 𝐴)
77 eqid 2734 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
78 eqid 2734 . . . . 5 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
7973, 74, 76, 17, 77, 78dvrelog2b 42047 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
80 dvexp 26005 . . . . 5 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
8162, 80syl 17 . . . 4 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
82 oveq1 7437 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑦𝑁) = ((2 logb 𝑥)↑𝑁))
83 oveq1 7437 . . . . 5 (𝑦 = (2 logb 𝑥) → (𝑦↑(𝑁 − 1)) = ((2 logb 𝑥)↑(𝑁 − 1)))
8483oveq2d 7446 . . . 4 (𝑦 = (2 logb 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))))
855, 7, 53, 60, 65, 72, 79, 81, 82, 84dvmptco 26024 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
86 dvrelogpow2b.6 . . . . . 6 𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
8786a1i 11 . . . . 5 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))))
88 dvrelogpow2b.7 . . . . . . . . . . . . . 14 𝐶 = (𝑁 / ((log‘2)↑𝑁))
8988a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐶 = (𝑁 / ((log‘2)↑𝑁)))
9089oveq1d 7445 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)))
9166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℂ)
9263nn0zd 12636 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℤ)
9427, 36, 93expclzd 14187 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ∈ ℂ)
9569adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℕ0)
9622, 95expcld 14182 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9727, 36, 93expne0d 14188 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) ≠ 0)
9891, 94, 96, 10, 97, 21divmuldivd 12081 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)))
9994, 10mulcomd 11279 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2)↑𝑁)))
100 1cnd 11253 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
101100, 66pncan3d 11620 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
102101eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 = (1 + (𝑁 − 1)))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑁 = (1 + (𝑁 − 1)))
104103oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2)↑(1 + (𝑁 − 1))))
105 1nn0 12539 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
106105a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℕ0)
10727, 95, 106expaddd 14184 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(1 + (𝑁 − 1))) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
108104, 107eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))))
10927exp1d 14177 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑1) = (log‘2))
110109oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑1) · ((log‘2)↑(𝑁 − 1))) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
111108, 110eqtrd 2774 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑𝑁) = ((log‘2) · ((log‘2)↑(𝑁 − 1))))
112111oveq2d 7446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2)↑𝑁)) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11399, 112eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
11427, 95expcld 14182 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ∈ ℂ)
11510, 27, 114mulassd 11281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))))
116115eqcomd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · ((log‘2) · ((log‘2)↑(𝑁 − 1)))) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
117113, 116eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))))
11810, 27mulcld 11278 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℂ)
119118, 114mulcomd 11279 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑥 · (log‘2)) · ((log‘2)↑(𝑁 − 1))) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
120117, 119eqtrd 2774 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘2)↑𝑁) · 𝑥) = (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2))))
121120oveq2d 7446 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑𝑁) · 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12298, 121eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 / ((log‘2)↑𝑁)) · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12390, 122eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
12491, 96mulcld 11278 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((log‘𝑥)↑(𝑁 − 1))) ∈ ℂ)
125 1zzd 12645 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℤ)
12693, 125zsubcld 12724 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 − 1) ∈ ℤ)
12727, 36, 126expne0d 14188 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑(𝑁 − 1)) ≠ 0)
128124, 114, 118, 127, 59divdiv1d 12071 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))))
129128eqcomd 2740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / (((log‘2)↑(𝑁 − 1)) · (𝑥 · (log‘2)))) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
130123, 129eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13191, 96, 114, 127divassd 12075 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))))
132131oveq1d 7445 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝑁 · ((log‘𝑥)↑(𝑁 − 1))) / ((log‘2)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
133130, 132eqtrd 2774 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))))
13422, 27, 36, 95expdivd 14196 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥) / (log‘2))↑(𝑁 − 1)) = (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))))
135134eqcomd 2740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1))) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
136135oveq2d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
137136oveq1d 7445 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥)↑(𝑁 − 1)) / ((log‘2)↑(𝑁 − 1)))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
138133, 137eqtrd 2774 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
13951oveq1d 7445 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) = (((log‘𝑥) / (log‘2))↑(𝑁 − 1)))
140139oveq2d 7446 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) = (𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))))
141140oveq1d 7445 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))))
142141eqcomd 2740 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · (((log‘𝑥) / (log‘2))↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
143138, 142eqtrd 2774 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))))
14453, 95expcld 14182 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑(𝑁 − 1)) ∈ ℂ)
14591, 144mulcld 11278 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) ∈ ℂ)
146145, 118, 59divrecd 12043 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) / (𝑥 · (log‘2))) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
147143, 146eqtrd 2774 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥)) = ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2)))))
148147mpteq2dva 5247 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐶 · (((log‘𝑥)↑(𝑁 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
14987, 148eqtrd 2774 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))))
150149eqcomd 2740 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝑁 · ((2 logb 𝑥)↑(𝑁 − 1))) · (1 / (𝑥 · (log‘2))))) = 𝐺)
15185, 150eqtrd 2774 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑𝑁))) = 𝐺)
1523, 151eqtrd 2774 1 (𝜑 → (ℝ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  cdif 3959  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  +crp 13031  (,)cioo 13383  cexp 14098   D cdv 25912  logclog 26610   logb clogb 26821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-logb 26822
This theorem is referenced by:  aks4d1p1p6  42054  aks4d1p1p5  42056
  Copyright terms: Public domain W3C validator